Математическое моделирование автоматизированного позиционного гидропривода целевых механизмов машин с контуром гидравлического управления повышенной эффективности

М.С.Полешкин, В.С.Сидоренко

Донской государственный технический университет, г. Ростов-на-Дону

Развитие машиностроительной индустрии, определяется уровнем совершенствования автоматизированного технологического оборудования (ATO) [1]. Повышение требований к быстродействию и точности их функционирования обусловливают необходимость совершенствования действующих и создания новых позиционных систем. Применение позиционных гидроприводов, в силу известных преимуществ [2] позволяет повысить эффективность таких систем.

В позиционных гидросистемах программного регулирования, широкое применение нашли гидромеханические позиционеры - устройства организующие контур гидравлического управления [2]. Они эффективно решают задачи оптимального управления выходного звена привода, используя гидравлические линии связи (ГЛС), позволяющие регулировать потоки жидкости на входе или выходе из гидродвигателя.

В результате схемотехнического поиска разработана модульная гидромеханическая система, обладающая возможностью эффективного структурнопараметрического управления процессами позиционирования целевых механизмов машин.

Рис.1. Структурная схема позиционного гидропривода с ГЛС: АЗП – автоматический задатчик перемещений; ЭВМ – электронно-вычислительный модуль; ДПК – датчик положения координаты; УГП – устройство грубого перемещения; УТП – устройство точного перемещения; УУ – устройство управления; ИЛИ – логический элемент «или»; ЭСУ - энергосиловая установка; ГД - гидродвигатель; ИУ – исполнительное устройство; ТУ – тормозное устройство; ОУ – объект управления. Структурная схема, показывающая взаимодействие ее силовой, гидравлической и механической подсистем, приведена на рис.1.

Гидравлическую подсистему образуют: энергосиловая установка (ЭСУ), гидродвигатель (ГД) и тормозное устройство. ЭСУ формирует требуемые параметры потока рабочей жидкости p_1, p_2, Q_1, Q_2 и преобразует его энергию в движение выходного звена ГД с заданными скоростью ω_1 и крутящим моментом $M_{\Gamma M}$.

Отработку требуемого алгоритма позиционного цикла обеспечивает блок контроля координаты (БКК). Его реализуют: датчик положения координаты (ДПК), кинематически связанный с гидродвигателем. Срабатывание ДПК и передача сигнала на устройство грубого перемещения (УГП) формирующего управляющие воздействие ру происходит в точке позиционирования, задаваемой автоматическим задатчиком перемещений АЗП [5].

Гидравлический сигнал на выходе УГП формируется за 0,001...0,003 с [2] давлением для прямого управления гидромеханическим позиционером (ГМП) встроенным в гидравлическую силовую систему и управляющих основными потоком гидродвигателя. Передачу сигналов осуществляют управляющие гидролинии связи (УГЛС). ГМП образуют: устройство управления (УУ) преобразующее и направляющее управляющий сигнал к исполнительному устройству (ИУ) регулирующему противодавление на сливе ГМ.

Рис.2. Расчетная схема динамической системы ПГП

Особенностью гидравлических связей ГМП, являются незначительные расходы управляющих потоков в УГЛС, что позволяет минимизировать объемы жидкости в контуре и повысить его быстродействие управляющего устройства (ГМП). Объединение нескольких исполнительных устройств в одно многофункциональное, так же повышает быстродействие и стабильность работы системы.

Возможности дальнейших исследований функционала предлагаемого схемотехнического решения ПГП, во многом зависят от качественного математического описания его гидромеханической системы.

При этом существенно сокращается время последующих испытаний и улучшается качество рабочих процессов реальных ПГП, сокращая затраты времени и средств. Для этого был выполнен динамический анализ позиционного гидропривода в соответствии с ниже приведенной методикой.

Для этого, на основании структурной и принципиальной гидравлических схем, разработана расчетная гидрокинематическая схема динамической системы ПГП представленная на рис.2.

Математическое описание динамических процессов протекающих в гидравлических системах осложняется особенностями поведением потока рабочей жидкости. Поэтому при формировании математической модели позиционной гидросистемы, были приняты следующие допущения в порядке их значимости:

- Механическую подсистему ГМУП в упрощённых моделях описывает одномассовая динамическая система, а в полной модели двухмассовая;
- Утечки малы и могут быть ограничены коэффициентом утечки К_у [3];
- Трубопроводы короткие, гладкие, жесткие, что позволяет не учитывать волновые явления;
- Жесткость гидравлического силового контура C_г ниже жесткости механической подсистемы C_м;
- Динамические процессы протекают в окрестности точки нагрузочной характеристики привода: *Q_H=const*, *p_H=p_{клтах}=const*;
- жидкость сжимаемая, • Рабочая капельная. В каналах присутствует нерастворённый воздух. Полагаем. что состояние среды описывается зависимостями, справедливыми для смесей с осреднёнными свойствами. Сосредоточенный объём сжимаемой жидкости Q_{сж} для удобства расчётов считаем присоединенным к рабочей полости гидродвигателя;
- Принимается, что сила вязкого трения в подвижных сопряжениях пропорциональна скорости, поскольку постоянная времени гидродинамического всплытия элемента больше времени переходного режима, то можно полагать, что сила трения пропорциональна скорости [3];
- Совмещение рабочих окон вращающегося распределителя происходит мгновенно при релейном управлении и по экспоненциальному закону при квазирелейном управлении;
- Коэффициент расхода управляющего устройства ГУКа представлен аппроксимированной функциональной зависимостью от степени открытия золотника клапана μ=f(x) полученной экспериментально [5].

Используя основные принципы и правила математического описания динамических подсистем с механическими связями, обоснованных работами В.А.

Кудинова, А.С. Проникова, В.Э. Пуша и др. [1], гидравлических силовых и управляющих подсистем, подтвержденных исследованиями О.Н. Трифонова, Д.Н. Попова и др. [3], составлена математическая модель, представляющая систему нелинейных дифференциальных уравнений, описывающих поведение ее подсистем.

1. Уравнения движения двухмассовой механической подсистемы:

$$I_1 \frac{d^2 \varphi_1}{dt^2} = M_{TM} - M_{C1} - M_{1-2} - M_{T3} - M_{BP} ; \qquad (1)$$

$$I_2 \frac{d^2 \varphi_2}{dt^2} = -M_H - M_{C2} + M_{1-2}; \qquad (2)$$

$$M_{\Gamma M} = \frac{1}{2\pi} q_M (p_1 - p_2);$$
(3)

$$M_{C1} = M_{T1} sign \frac{d\varphi_1}{dt} + k_{BT} \frac{d\varphi_1}{dt}; \qquad (4)$$

$$M_{C2} = M_{T2} sign \frac{d\varphi_2}{dt} + k_{BT} \frac{d\varphi_2}{dt};$$
(5)

$$M_{1-2} = h \cdot \left(\frac{d\varphi_1}{dt} - \frac{d\varphi_2}{dt}\right) + C \cdot (\varphi_1 - \varphi_2),\tag{6}$$

где I_1, I_2 - приведенные моменты инерции ведущих и ведомых масс, $\kappa c \cdot m^2$;

 φ_1, φ_2 – координаты их угловых перемещений, *рад*;

 $M_{_{{\it Г}\!{\it M}}}$ -момент сил гидромотора, H·м;

 M_{C1}, M_{C2} - моменты сил сопротивления, $H \cdot M$;

 M_{1-2} – упругий момент, $H \cdot M$;

 M_{H} – момент технологической нагрузки, $H \cdot M$;

h – коэффициент демпфирования механической подсистемы;

С-коэффициент жесткости механической подсистемы;

 M_{BP} – момент вращающегося распределителя, H:M;

 M_{T3} - тормозной момент, $H \cdot M$;

 $M_{T3(max)}$ - максимальное значение тормозного момента, $H \cdot M$;

τ - постоянная времени нарастания тормозного момента;

 q_{M} - рабочий объем гидромотора, M^{3} ;

$$k_n = \frac{b_{o\kappa}}{\pi \cdot d_{o\kappa}}$$

п · *u*₃ - коэффициент полноты использования периметра втулки золотника при размещении в ней окон;

 M_{T1}, M_{T2} - моменты сухого трения, $H \cdot M$;

2. Гидравлическая силовая подсистема с дроссельным управлением описывается уравнениями баланса расходов характеризующими напорную и сливную лини [3]:

$$Q_H = Q_{\Gamma M} + Q_{\Pi} + \sum Q_y + Q_{C \mathcal{K}}; \tag{7}$$

$$Q_{\Gamma M} + Q_{\Pi} = Q_{\Gamma V K} + Q_{C \mathcal{K}}; \tag{8}$$

$$Q_{IM} = q_M \cdot \omega_1; \tag{9}$$

$$\sum Q_y = r_y \cdot p_u; \tag{10}$$

$$Q_{\Pi} = r_n \cdot (p_1 - p_2); \tag{11}$$

$$Q_{C\mathcal{K}} = \frac{q_{\mathcal{M}} + W_{izz}}{E_{c\mathcal{M}}} \cdot \frac{dp_1}{dt};$$
(12)

$$E_{cM} = \frac{E_{\mathcal{M}}}{1 + \alpha_{g} \cdot \frac{E_{\mathcal{M}}}{E_{c}}};$$
(13)

где Q_H - расход гидронасоса, м³/с;

 $Q_{\Gamma M}$ - расход идущий на вращение вала гидромотора, м³/с;

 Q_v - расход идущий на компенсацию утечек, м³/с;

 Q_{\varPi} - расход идущий на перетечки рабочей жидкости, м³/с;

полостях гидромотора и подводящих каналах, м³/с;

 $Q_{\Gamma V K}$ - расход проходящий через гидроуправляемый клапан, м³/с.

*г*_{*у*}, *г*_{*n*}, - коэффициенты утечки и перетечки;

*Е*_в, *Е*_ж - модули объемной упругости жидкости и воздуха;

*а*_в – коэффициент учитывающий содержание воздуха в жидкости;

W_{ігл} – объем і-го участка гидролиний соответственно м³;

$$\frac{ap_1}{dt}$$
 - приращение давления в напорной полости гидромотора.

Зависимость дросселирования расхода рабочей жидкости Q_3 через окна золотников гидрораспределителей [4], от изменения их проходного сечения и перемещения золотника x_p при перепаде давлений Δp определяется с помощью выражения:

$$Q_{3i} = k_{pi} \cdot x_{pi} \cdot \sqrt{|\Delta p|} \cdot sign(\Delta p); \qquad (14)$$

где $k_{P_i} = \mu_3 \cdot \pi \cdot d_3 \cdot k_n \cdot r_y \cdot \sqrt{\frac{2}{\rho}}$ - удельные (отнесенные к единице перемещения золотника) проводимости окон, открытых при смещении золотника от среднего положения;

Преобразуя уравнения (7), (8) и выполнив подстановку значений расходов, получим уравнения характеризующие изменения давлений для напорной и сливной гидролиний:

$$\frac{dp_{1}}{dt} = -\frac{k_{K\Pi} \cdot E_{_{CM}}}{q_{_{H}} + q_{_{M}} + W_{_{J1}}} \cdot x_{_{K\Pi}} \cdot \sqrt{|p_{_{1}} - p_{_{CJ}}|} \cdot sign(p_{_{1}} - p_{_{CJ}}) - \frac{q_{_{M}} \cdot \omega_{_{1}}}{2\pi} \times \frac{E_{_{CM}}}{(q_{_{H}} + q_{_{M}} + W_{_{J1}})\eta_{_{O}}} +
+ \frac{q_{_{H}} \cdot \omega_{_{H}}}{2\pi} \cdot \frac{E_{_{CM}}}{(q_{_{H}} + q_{_{M}} + W_{_{J1}})\eta_{_{O}}} - \frac{k_{_{P2}} \cdot E_{_{CM}}}{q_{_{H}} + q_{_{M}} + W_{_{J1}}} \cdot x_{_{P2}} \cdot \sqrt{|p_{_{1}} - p_{_{IVT}}|} \cdot sign(p_{_{1}} - p_{_{IVT}});$$
(15)

$$\frac{dp_2}{dt} = -\frac{k_{\mathcal{IP}} \cdot E_{_{CM}}}{q_{_M} + W_{_{\mathcal{I}2}}} \cdot x_{_{\mathcal{IP}}} \cdot \sqrt{|p_2 - p_3|} \cdot sign(p_2 - p_3) - \frac{k_{\mathcal{I}VK} \cdot E_{_{CM}}}{q_{_M} + W_{_{\mathcal{I}2}}} \cdot x_{\mathcal{I}VK} \cdot \sqrt{|p_2 - p_{_{C\mathcal{I}}}|} \times sign(p_2 - p_{_{C\mathcal{I}}}) + \frac{q_{_M} \cdot \omega_1}{2\pi} \cdot \frac{E_{_{CM}}}{(q_{_M} + W_{_{\mathcal{I}2}})\eta_O};$$
(16)

$$\frac{dp_3}{dt} = \frac{k_{\mathcal{AP}} \cdot E_{c_{\mathcal{M}}}}{W_{\mathcal{J}3}} \cdot x_{\mathcal{AP}} \cdot \sqrt{|p_3 - p_4|} \cdot sign(p_3 - p_4) - \frac{k_{P4} \cdot E_{c_{\mathcal{M}}}}{q_M + W_{\mathcal{J}3}} \times x_{P4} \cdot \sqrt{|p_3 - p_4|} \cdot sign(p_3 - p_4);$$
(17)

$$\frac{dp_4}{dt} = \frac{k_{P4} \cdot E_{_{CM}}}{x_{_{\Gamma YK}} \cdot S_{_{\Gamma YK}} + W_{_{JI4}}} \cdot x_{P4} \cdot \sqrt{|p_3 - p_4|} \cdot sign(p_3 - p_4) - \frac{S_{_{\Gamma YK}} \cdot V_{_{\Gamma YK}} \cdot E_{_{CM}}}{x_{_{\Gamma YK}} \cdot S_{_{\Gamma YK}} + W_{_{JI4}}};$$
(18)

3.Управляющая подсистема реализуется контуром гидравлического управления КГУ, описываемым подмоделями ВР, движением золотника ГУКа и управляющими гидролиниями.

3.1Уравнение движения золотника распределителя Р4, управляющего ГУК:

$$m_{np.P4} \cdot \frac{d^2 x_{P4}}{dt^2} = S_{P4}(p_y - C_{np}(x_{0P} \pm x_{P4})) - k_{BT} \cdot \frac{dx_{P4}}{dt} - C_{np.P4}(x_{0P} \pm x_{P4}) - F_y - F_{CT} \cdot sign\frac{dx_{P4}}{dt} \pm F_{TZ} \cdot sign\frac{dx}{dt};$$
(19)

где $m_{np.p_4}$ - приведенная масса золотника распределителя, $H \cdot c^2 / M^{-4}$; F_{CT} - сила сухого трения, H; *p*_{уР} – давление управления распределителя, *Па*;

*k*_{*вт*} - коэффициент вязкого трения;

 $C_{np.p4}$ - жесткость пружины распределителя, H/M;

 F_{y} - реакция силы упоров, H;

*x*_{0*P*} - предварительная деформация пружины распределителя, *м*;

*x*_{*P4*} - перемещение золотника распределителя, *м*.

3.2 Уравнение движения золотника гидроуправляемого клапана:

$$m_{np.\Gamma YK} \cdot \frac{d^2 x_{\Gamma YK}}{dt^2} = p_y \cdot S_{\Gamma YK} - k_{BT} \frac{dx_{\Gamma YK}}{dt} - c_{np.K} (x_{0K} \pm x_{\Gamma YK}) - F_{CT} \cdot sign \frac{dx_{\Gamma YK}}{dt} - F_{V} \pm F_{\Gamma T} \cdot sign \frac{dx}{dt};$$

$$(20)$$

где $m_{np.\,rvk}$ - приведенная масса золотника клапана, $H \cdot c^2 / M^{-4}$;

*p*_{*YK*} – давление управления клапана, *Па*;

*С*_{*пр.К*} – жесткость пружины клапана, *Н*/*м*;

*x*_{ГУК} – перемещение золотника клапана, *м*;

*x*_{0*K*} – предварительная деформация пружины клапана, *м*;

 $S_{\Gamma V K}$ – эффективная площадь золотника ГУКа, M^2 ;

3.3 Уравнение управляющего давления распределителя Р4:

$$\frac{dp_{y}}{dt} = \frac{k_{P3} \cdot E_{_{CM}}}{x_{_{P4}} \cdot S_{_{P4}} + W_{_{Y1,T}}} \cdot x_{_{P3}} \cdot \sqrt{|p1 - py1|} \cdot sign(p1 - py1) + \frac{V_{_{TYK}} \cdot S_{_{P4}} \cdot E_{_{CM}}}{x_{_{P4}} \cdot S_{_{P4}} + W_{_{Y1,T}}};$$
(21)

где W_{i_1} и V_i - объем гидролиний и гидроаппарата соответственно, M^3 ;

X_i - перемещение запорно-регулирующего элемента соответствующего гидроаппарата, *м*;

 S_{Pi} - эффективная площадь золотника распределительного элемента соответствующего гидроаппарата, m^2 ;

p_i – давление на соответствующем участке гидропривода, *Па*;

 $E_{\rm \tiny CM}$ - модуль объемной упругости смеси жидкости и воздуха, $\varPi a;$

Математическая модель системы ПГП исследовалась с использованием программного пакета Matlab 2011a и её подсистемы модульного моделирования динамических процессов simulink. При решении, применяли прямой численный метод Рунге-Кутта и Эйлера с постоянным шагом интегрирования равным 0,00001. При этом принятые начальные условия, параметры контура гидравлического управления (Табл.1) и управляющие воздействия (x_i), имели функциональную зависимость от координаты выходного звена (φ).

Реализация и решение системы дифференциальных уравнений описывающих динамическую систему позиционного гидропривода, в программе Matlab, выполнялось по следующему алгоритму:

1. Составление вычислительного блока для решения одномассовой матмодели позиционного гидропривода.

2. Введение в модель, подмодели гидравлического силового контура в составе которого участвуют гидрораспределители ВР, Р2 и Р3 с релейной схемой включения (учитывая реальное время срабатывания t_{cp}=0,002...0,003c) [2].

3. Введение в модель, подмодели гидравлического контура управления с гидролининиями связи – распределителя Р4, с квази-релейной схемой переключения.

4. Интеграцию в КГУ, модели гидравлического устройства управления – ГУКа, с аппроксимацией зависимости $\mu = f(x)$ соответствующей реальным гидродинамическим процессам [5], полученную с учетом динамических характеристик измерительных устройств [6].

5. Выбор метода решения системы дифференциальных уравнений математической модели и соответствующего размера шага.

При решении дифференциальной системы уравнений, для исполнительного элемента КГУ - гидроуправляемого клапана, вначале использовались релейный (рис.3а), квази-релейный (рис.3б) и на завершающей стадии – реальный законы (рис.3в) перемещения управляющего элемента (золотника).

N⁰	Параметры	Обозначе	Размер-	Диапазоны
п/п		ние	ность	изменения
1	Площадь проходного сечения	SP	M ²	0-0,0000785
	распределителя			
2	Коэффициент расхода	μ_3		0,8
	распределителя			
3	Проводимость управляющего	Kyp		1,13.10-4
	распределителя			
4	Жесткость пружины ГУКа	$C_{\pi p}$	Н/м	24220
5	Предварительное натяжение	x ₀	М	0,0095
	пружины ГУКа			
6	Давление контура гидравлического	py	Па	$1,6-6,3\cdot10^{6}$
	управления			
7	Расход через ВР	Q _{Bp}	м ³ /с	0,0015-0,0138

Таблица 1 – Параметры устройств КГУ

Исходные данные, принятые для моделирования позиционного гидропривода приведены в табл. 2. Исследования проводились при различных диапазонах функционирования гидромеханической системы привода. Был определен базовый режим работы, характерный для большинства поворотно-делительных механизмов АТО.

В результате выполненной отладки и апробации вычислительных блоков программы, реализованной в подсистеме Simulink, получены осциллограммы зависимостей выходных параметров: φ, ω – механической подсистемы, а так же задающих воздействий– x_{ГУК} и x_{P2}, x_{P4} - перемещения управляющих элементов КГУ.

NoNo	Параметры	Обозна	Размер-	Диапазоны	Базовый
π/π		чение	ность	изменения	режим
1	Скорость	ωi	Рад./с	5-20	10
2	Обобщенная сила сухого	M _{r01}	Нм	1-8	4,5
	трения гидродвигателя				
3	Обобщенная сила гидро-	M _{T3} (t)	Нм	10-100	32
	механического тормоза				
4	Основной конструктивный	$K = \frac{q_{M}}{M}$	м ³ /рад	$3*10^{-6}-25*10^{-6}$	$5,57*10^{-6}$
	параметр гидродвигателя	$^{\Pi_{M}} = 2\pi$			
5	Коэффициент вязкого	Ктм	Н•мс/рад	0,05-0,35	0,11
	трения гидродвигателя		•		
6	Приведенный коэффициент	Co	Нм/рад	0-15000	
	жесткости				
7	Перемещаемые ведущие	J_1	кг м ²	39*10 ⁻⁴ -0,024	0,0034
	массы				
8	Приведенный момент	J_{π}	Hмc ²	0,01-0,1	0,033
	инерции				
9	Давление насоса	P _H	Па	$1,5*10^6-6,3*10^6$	$5,5*10^{6}$
10	Давление в сливой	Рсл	Па	$0,5*10^{6}-1,5*10^{6}$	$0,5*10^{6}$
	гидролинии				

Табл. 2. Исходные данные для моделирования ПГП

Конфигурация интерфейса составленной программы позволила работать в диалоговом режиме, варьируя исходные данные (приведенные в Табл.2), осуществлять выбор структуры задачи и мониторинг выходных характеристик. В ходе математического эксперимента, проводилась оценка погрешностей и статистическая обработка полученных численных данных по известной методике [7].

После каждого математического эксперимента, его результаты автоматически образовывали массив данных, со следующими параметрами:

- ω₀- ω₁ в режиме разгона на участке t_{раз};
- ω₁- ω₂; при установившемся режиме на участке t_{уст};
- $\Delta \phi 1 \Delta \phi_2$ при режиме замедления на участке t_{3am} ;
- Δφ в момент позиционирования на участке t_{поз};

Движение одномассовой механической подсистемы, характеризует фазовый портрет координаты перемещения выходного звена (рис.3). Движение приведенных масс I, в момент завершения процесса позиционирования, сопряжено с колебаниями (0,37 с), которые благодаря включению гидромеханического тормозного устройства – гасятся, в области $\Delta \varphi$.

Рис. 3. Результаты моделирования динамической системы ПГП: φ – радиальное перемещение; ω – радиальная скорость; Р_у – давление управления; Р₂ – давление противодавления (в сливной магистрале ГМ); х_{ГУК} – перемещение золотника ГУКа; х_{Р2} – перемещение золотника Р2; х_{Р4} – перемещение золотника Р4

За точность позиционирования принимаем путь торможения вала гидромотора и планшайбы стола поворотно-делительного механизма с момента начала совмещения рабочих окон вращающегося распределителя ВР. При дальнейшем перемещении втулки образуется проходное сечение и управляющий сигнал p_{v2} на Р4. Последний, переключаясь, соединяет заклапанную полость ГУК со сливом, который закрывается, перекрывая слив гидромотора, что приводит к его останову. Точность позиционирования определяли выражением $\varphi_{\Pi 3} = \varphi_{\rm B} \pm \Delta \varphi$, где $\varphi_{\Pi 3}$ $\varphi_{\scriptscriptstyle \rm B}$ положительный выбег гидромотора, $\Delta \varphi$ – его рассеяние, обусловленное влиянием случайных факторов.

Устройство позиционер	Р _у , МПа	n _{гм} , об∕мин	n _{oy} , об/мин	М _{гм} , Нм	ф _{гм} , рад	Δφ _{гм} , рад	Δφ _{оу} , рад	t _p , c	$\sum_{\mathbf{c}} t_{\mathrm{T}},$
Гидрозамок	-				0,345	0,052	0,004	0,055	0,07
МФУУ	1,7	140	11.6	10	0,215	0,01	0,003	0,42	0,54
(регулятор потока)	3	110	11,0	10	0,108	0,029	0,002	0,46	0,41
ГУКП	3	150	10.5	10	0,102	0,023	0,0017	0,39	0,37
(клапан)	6,3	3	12,5	10	0,103	0,02	0,0015	0,042	0,27

Табл.3. Результаты сравнения ПГП с различной структурой КГУ

По результатам моделирования, при заданных режимах i_p , i_y , $n_{\Gamma M}$, $M_{\Gamma M}$ очевидна эффективность процесса позиционирования с применением ГУКП. В среднем, точность позиционирования повышается ~ на 40 %, а быстродействие на 33%, по сравнению с конкурирующими решениями на основе МФУУ (Табл.3), что подтверждает эффективность предлагаемого схемотехнического решения.

Литература

- 1. Кудинов В.А. Динамика станков. М.: Машиностроение, 1967. 359с.
- 2. Сидоренко В.С. Синтез быстродействующих позиционирующих гидромеханических устройств / СТИН 2003, №8 с.16-20.
- 3. Попов Д.Н. Механика гидро- и пневмоприводов: учеб. для вузов. М.:Изд-во МГТУ им Н.Э.Баумана,2001.-320с.,ил.
- 4. Цуханова Е.А. Динамический синтез дроссельных управляющих устройств гидроприводов. М., «Наука», 1978.
- Сидоренко В.С., Полешкин М.С. Многофункциональное гидромеханическое устройство позиционирования целевых механизмов станочных систем повышенного быстродействия и точности / Вестник ДГТУ. - 2009. –Т.9. – Спец. вып.
- Иосифов В.П. Имитационный подход к проблеме определения динамических характеристик средств измерений / Инженерный Вестник Дона [Электронный ресурс]. – Ростов-на-Дону: Ростовское региональное отделение Российской Инженерной Академии – №4, 2010. – Шифр Информрегистра: 0421100096. – URL: http://www.ivdon.ru/magazine/archive/n4y2010/308/ – 5 с.
- Джонсон Н., Лион Φ. Статистика и планирование эксперимента в технике и науке. Методы обработки данных. – М.: Мир, 1980. – 602 с.