

Анализ атомной структуры углеродных нанотрубок методами спектроскопии комбинационного рассеяния света и электронной дифракции

Д.И. Левшов, М.В. Авраменко, В.В. Пимонов

Южный федеральный университет, Ростов-на-Дону

Аннотация: В работе представлен метод анализа и диагностики атомной структуры одно - и многостенных углеродных нанотрубок, основанный на комбинировании спектроскопии комбинационного рассеяния света, электронной дифракции и электронной микроскопии. Обсуждаются основные особенности данного подхода, а также дается пример идентификации структуры индивидуальной углеродной нанотрубки. Показано, что комбинирование нескольких независимых методик позволяет однозначно и точно определять геометрию нанотрубок.

Ключевые слова: углеродные нанотрубки, спектроскопия КРС, рамановская спектроскопия, электронная дифракция, электронная микроскопия

Введение

Углеродные нанотрубки (УНТ) представляют собой полые цилиндры, состоящие из одного или нескольких свернутых листов графена. Несмотря на недавние успехи в области синтеза нанотрубок, все еще нет возможности получать УНТ с любыми заранее заданными параметрами, т.е. со строго определенным числом слоев, диаметром, углами хиральности и типом проводимости.

Так как необходимым условием для изучения физических свойств или прикладного применения нанотрубок является знание их атомной структуры, огромное значение приобретает разработка и развитие методов определения структурных параметров УНТ. Среди таких методов, наряду с электрондифракционными, наиболее эффективным является метод спектроскопии комбинационного рассеяния света (КРС) [1-2], который позволяет определять особенности атомной и электронной структуры и динамики решетки индивидуальных УНТ.

В данной работе представлен экспериментальный метод определения структуры углеродных нанотрубок, основанный на комбинировании спектроскопии комбинационного рассеяния света, электронной микроскопии высокого разрешения (HRTEM) и электронной дифракции (ЭД, или ED).

Эксперимент

Эксперименты по электронной дифракции и электронной микроскопии проводились на микроскопе FEI Titan Cubed C_s corrected 60-300 kV TEM при рабочем напряжении 80 кВ. Электронные дифрактограммы записывались с использованием CCD-детектора (Gatan Ultrascan 2Kx2K). Время накопления электронных дифрактограмм составляло <10 с.

Последующие эксперименты по резонансной спектроскопии КРС были проведены на спектрометре Jobin Yvon T64000, оснащенным кремниевым CCD детектором. Рассеянный свет собирался с использованием 100х объектива (N.A. = 0.95) в конфигурации обратного рассеяния. Во всех измерениях, поляризации падающего и рассеянного света ориентировались в параллельном оси нанотрубки направлении (|| || поляризованный спектр КРС). В качестве источников возбуждения использовался максимально широкий набор длин волн лазерного возбуждения: 458, 476, 488, 514, 532, 568...633, 647, 676 и 710...900 нм (дискретные лазеры Ar+, Kr+, He-Ne и лазеры с перестраиваемой длиной волны Ti: sapphire, Dye laser). Во избежание нагрева нанотрубки, мощность лазера удерживалась на уровне 50 мкВт.

Особенности методики

Структура УНТ может быть определена уникальным образом с помощью пары чисел (n,m), или набора параметров (d,θ). Электронная дифракция и трансмиссионная электронная микроскопия (TЭM)

представляют собой одни из лучших прямых методов определения этих параметров [3]. Тем не менее, размеры (например, диаметр УНТ), определяемые с помощью ТЭМ, очень чувствительны к ориентации УНТ по отношению к падающему электронному пучку и условиям фокусировки. Изза этого атомная структура УНТ может быть получена с помощью микроскопии только при определенных условиях. Электронная дифракция, с другой стороны, не имеет подобных недостатков и потому является более надежным методом.

Рис. 1. – Комбинирование экспериментальных данных электронной микроскопии, электронной дифракции и спектроскопии КРС упрощает присвоение индексов хиральности исследуемых УНТ

Электронная дифрактограмма одностенной углеродной нанотрубки может быть представлена как изображение ее обратного пространства. При этом мы можем определить в ней два эффекта: дифракцию от двух параллельных листов графена и дифракцию от нанотрубки как целого.

Структурная информация из электронных дифрактограмм может быть получена либо путем измерения осевых позиций layer lines или путем определения распределения интенсивности в радиальном направлении (см. подробный обзор в работе [4]).

Однако, при увеличении диаметров и числа слоев исследуемых углеродных нанотрубок, анализ электронных дифрактограмм становится исключительно сложным. Иногда невозможно однозначно определить геометрию УНТ только на основе электронной дифракции и электронной микроскопии (см. пример ниже). В этом случае дополнительная информация об УНТ, полученная из спектроскопии КРС, может значительно сузить число возможных кандидатов (основные принципы этого подхода представлены на рис. 1). В частности, используется информация: а) о частотах радиальных мод, б) о типе проводимости слоев и в) об оптических переходах в УНТ.

Учет всей этой информации вручную мог бы занять значительное время. Поэтому для упрощения процедуры диагностики структуры нанотрубок мы разработали программный код, автоматически учитывающий экспериментальные данные и погрешности измерений и предоставляющий список возможных кандидатур. В основе кода лежит идея геометрического перебора всех комбинаций, автоматическое сравнение экспериментальных и теоретических данных и вывод наиболее вероятных комбинаций.

Результаты использования методики

Используя представленные принципы комбинирования выше электронной дифракции и спектроскопии КРС, мы проанализировали и определили индексы хиральности 12 индивидуальных одностенных и 13 двустенных УНТ. В индивидуальных качестве примера процедуры присвоения индексов представим следующую двустенную нанотрубку. На рисунке 2 электронное изображение электронная показано ee И

дифрактограмма. Отметим, что исследуемая нанотрубка достаточно длинная и однородная: это было подтверждено в серии измерений ЭД в различных точках УНТ (см. рис. 2, а). Оценка диаметров нанотрубки по электронным изображениям (рис. 2, б) дает внешний диаметр $d_{out} = 3,2 \pm 0,5$ нм и внутренний $d_{in} = 2,5 \pm 0,5$ нм. При анализе электронной дифрактограммы (рис. 2, в) мы обнаружили средний диаметр нанотрубки $\langle D \rangle = 2,97 \pm 0,3$ нм и межслойное расстояние $\delta D/2 = 0,4$ нм, что эквивалентно, $d_{out} = 3,37$ нм и $d_{in} = 2,57$ нм.

Рис. 2. - Электроннограммы низкого (а) и высокого разрешения (б) и электронная дифрактограмма индивидуальной двустенной нанотрубки (в)

Из электронных дифрактограмм мы также установили значения хиральных углов двустенной нанотрубки: $\theta_1 = 19,06^\circ \pm 0,2^\circ$, $\theta_2 = 22.49 \pm 0,2^\circ$. Далее на основе всех полученных экспериментальных данных в пределах экспериментальной погрешности были определены 6 возможных комбинаций, соответствующих исследуемой двустенной нанотрубке (таблица 1). На этом этапе уже ясно видно, что для однозначного индексирования УНТ, необходимы дополнительные экспериментальное данные, в частности информация спектроскопии КРС.

Таблица №1

#	(n,m)	<i>d</i> , нм	δd (нм)	Θ (°)	$(2n+m) \mod 3$	m/n
1	(22,14)	2.46	0.65	22.69	1	0.6364
	(30,15)	3.11		19.11	0	0.5000
2	(24,15)	2.67	0.65	22.41	0	0.6250
	(20,14)	3.32		19.11	2	0.7000
3	(22,11)	2.28	0.73	19.11	1	0.5000
	(27,17)	3.01		22.52	2	0.6296
4	(24,12)	2.49	0.73	19.11	0	0.5000
	(29,18)	3.22		22.30	1	0.6207
5	(26,13)	2.69	0.66	19.11	2	0.5000
	(30,19)	3.35		22.62	1	0.6333
6	(28,14)	2.90	0.66	19.11	1	0.5000
	(32,20)	3.56		22.41	0	0.6250

Возможные варианты идентификации двустенной УНТ (межслойное расстояние взято за $\delta D = 0.68 \pm 0.1$ нм)

На рис. З изображен спектры КРС исследуемой двустенной нанотрубки, измеренные на различных длинах волн лазерного возбуждения: 476, 488, 514, 625, 676, 710 и 830 нм. Узкие линии (G-полосы) в высокочастотной области спектра указывают на полупроводниковый тип проводимости исследуемой нанотрубки (подробности в работах [2,5,6]). Из шести возможных комбинаций, полученных по данным электронной дифракции (таблица 1), четыре (\mathbb{N} 1, 2, 4 и 6) содержат металлические слои ((2n+m) mod 3 = 0), а, следовательно – могут быть сразу отклонены.

Далее в низкочастотной области спектра наблюдаются 2 интенсивные компоненты дыхательно-подобных мод (ДПМ) = 98 см⁻¹ и 121 см⁻¹. Используя формулы для частот ДПМ мод, обсуждаемые в работах [2,7-10],

мы можем вычислить следующие диаметры слоев двустенной нанотрубки: D_{внеш} = 3.02 нм и D_{внутр} = 2.26 нм.

Объединив все полученные данные спектроскопии КРС, мы можем сделать вывод, что единственной удовлетворяющей всем параметрам нанотрубкой является УНТ (22, 11)@ (27, 17).

Рис.3.- Спектры КРС исследуемой двустенной нанотрубки, измеренные на различных длинах волн лазерного возбуждения: 476, 488, 514, 625, 676, 710 и 830 нм/

Заключение

В данной работе мы провели исследование большого количества индивидуальных одностенных и двустенных углеродных нанотрубок комбинацией методов электронной дифракции и спектроскопии КРС. В результате исследования были определены оптимальные критерии присвоения индексов хиральностей углеродных нанотрубок. Для упрощения процедуры диагностики структуры нанотрубок мы разработали программный

код, автоматически учитывающий экспериментальные данные и погрешности измерений и предоставляющий список возможных кандидатур. Предлагаемые эффективные критерии диагностики структуры углеродных нанотрубок с применением спектроскопии КРС должны способствовать их успешному синтезу и дальнейшему практическому применению в качестве материалов для наноэлектроники и фотоники.

Литература

- Saito R., Hofmann M., Dresselhaus G., Jorio A., and Dresselhaus M.S., Raman spectroscopy of graphene and carbon nanotubes // Advances in Physics. 2011. V. 60. N. 3, P. 413–550.
- 2. Левшов Д.И., Авраменко М.В., Спектроскопия комбинационного рассеяния света как метод диагностики структуры индивидуальных углеродных нанотрубок // «Инженерный вестник Дона», 2013, №4 URL: ivdon.ru/ru/magazine/archive/n4y2013/1972.
- 3. Левшов Д.И., Авраменко М.В., Электронные методы структурного анализа индивидуальных углеродных нанотрубок // «Инженерный вестник Дона», 2013, №4 URL: ivdon.ru/ru/magazine/archive/n4y2013/2006.
- Allen C.S. A review of methods for the accurate determination of the chiral indices of carbon nanotubes from electron diffraction patterns / C.S. Allen, C. Zhang, G. Burnell, A.P. Brown, J. Robertson, B.J. Hickey // Carbon - 2011. - V. 49.- Issue 15.- P. 4961–4971.
- Paillet M. Probing the structure of single-walled carbon nanotubes by resonant Raman scattering / M. Paillet, T. Michel, A. Zahab, D. Nakabayashi, V. Jourdain, R. Parret, J. Meyer, and J.-L. Sauvajol // Phys. Status Solidi. - 2010.
 -V. 247.- Issue 11-12. - P. 2762–2767.

- Michel T. About the indexing of the structure of single-walled carbon nanotubes from resonant Raman scattering / T Michel, M. Paillet, A. Zahab, D. Nakabayashi, V. Jourdain, R. Parret, J.-L. Sauvajol // Adv. Nat. Sci. Nanosci. Nanotechnol. - 2011. -V. 1. - Issue 4. - P. 045007 (1-5).
- Rochal S.B., Two-dimensional elasticity determines the low-frequency dynamics of single- and double-walled carbon nanotubes / S.B. Rochal, V.L. Lorman, Y. I. Yuzyuk // Phys. Rev. B. - 2013. - V. 88. - Issue 23. - P. 235435 (1-6).
- Levshov, D. Comparative Raman Study of Individual Double-Walled Carbon Nanotubes and Single-Walled Carbon Nanotubes / D. Levshov, T. Michel, T. Than, M. Paillet, R. Arenal, V. Jourdain, Yu. I. Yuzyuk, and J.-L. Sauvajol // Journal of Nanoelectronics and Optoelectronics. - 2013. - V. 8. – Issue 1. – P. 9 -15.
- Parret R. Raman Spectroscopy on Individual Identified Carbon Nanotubes / R. Parret, D. Levshov, T. X. Than, D. Nakabayashi, T. Michel, M. Paillet, R. Arenal, V. N. Popov, V. Jourdain, Yu. I. Yuzyuk, A. A. Zahab, J.-L. Sauvajol // Mater. Res. Soc. Symp. Proc. – 2012. - V. 1407. – P. 1-8.
- Levshov, D.I. Experimental Evidence of a Mechanical Coupling between Layers in an Individual Double-Walled Carbon Nanotube / D.I. Levshov, Yu. I.Yuzyuk, T.X. Than, R. Arenal, V.N. Popov, R. Parret, M. Paillet, V. Jourdain, A.A. Zahab, T. Michel, J.-L. Sauvajol // Nanoletters. - 2011. - V.11. Issue 11. – P. 4800 – 4804.

References

- Saito R., Hofmann M., Dresselhaus G., Jorio A., and Dresselhaus M.S., Raman spectroscopy of graphene and carbon nanotubes // Advances in Physics. 2011.
 V. 60. N. 3, P. 413–550.
- Levshov D.I., Avramenko M.V. Raman spectroscopy as a method for structure analysis of individual carbon nanotubes // Inženernyj vestnik Dona (Rus), 2013, №4 URL: ivdon.ru/ru/magazine/archive/n4y2013/1972.
- 3. Levshov D.I., Avramenko // // Inženernyj vestnik Dona (Rus), 2013, №4 URL: ivdon.ru/ru/magazine/archive/n4y2013/2006.
- Allen C.S. A review of methods for the accurate determination of the chiral indices of carbon nanotubes from electron diffraction patterns / C.S. Allen, C. Zhang, G. Burnell, A.P. Brown, J. Robertson, B.J. Hickey // Carbon - 2011. - V. 49.- Issue 15.- P. 4961–4971.
- Paillet M. Probing the structure of single-walled carbon nanotubes by resonant Raman scattering / M. Paillet, T. Michel, A. Zahab, D. Nakabayashi, V. Jourdain, R. Parret, J. Meyer, and J.-L. Sauvajol // Phys. Status Solidi. - 2010.
 -V. 247. - Issue 11-12. - P. 2762–2767.
- Michel T. About the indexing of the structure of single-walled carbon nanotubes from resonant Raman scattering / T Michel, M. Paillet, A. Zahab, D. Nakabayashi, V. Jourdain, R. Parret, J.-L. Sauvajol // Adv. Nat. Sci. Nanosci. Nanotechnol. - 2011. -V. 1. - Issue 4. - P. 045007 (1-5).
- Rochal S.B., Two-dimensional elasticity determines the low-frequency dynamics of single- and double-walled carbon nanotubes / S.B. Rochal, V.L. Lorman, Y. I. Yuzyuk . Phys. Rev. B. - 2013. - V. 88. - Issue 23. - P. 235435 (1-6).
- 8. Levshov, D. Comparative Raman Study of Individual Double-Walled Carbon Nanotubes and Single-Walled Carbon Nanotubes / D. Levshov, T. Michel, T.

Than, M. Paillet, R. Arenal, V. Jourdain, Yu. I. Yuzyuk, and J.-L. Sauvajol. Journal of Nanoelectronics and Optoelectronics. - 2013. - V. 8. – Issue 1. – P. 9 -15.

- Parret R. Raman Spectroscopy on Individual Identified Carbon Nanotubes / R. Parret, D. Levshov, T. X. Than, D. Nakabayashi, T. Michel, M. Paillet, R. Arenal, V. N. Popov, V. Jourdain, Yu. I. Yuzyuk, A. A. Zahab, J.-L. Sauvajol. Mater. Res. Soc. Symp. Proc. – 2012. - V. 1407. – P. 1-8.
- Levshov, D.I. Experimental Evidence of a Mechanical Coupling between Layers in an Individual Double-Walled Carbon Nanotube / D.I. Levshov, Yu. I.Yuzyuk, T.X. Than, R. Arenal, V.N. Popov, R. Parret, M. Paillet, V. Jourdain, A.A. Zahab, T. Michel, J.-L. Sauvajol. Nanoletters. - 2011. - V.11. Issue 11. – P. 4800 – 4804.