Преимущества применения новой антигололедной композиции над традиционной пескосоляной смесью на объектах дорожного хозяйства

В.Ф. Желтобрюхов, Ю.Н. Ильинкова, Н.В. Колодницая, В.М. Осипов

Согласно ОДН 218.2.027-2003 "Требования к противогололедным материалам" к антигололедным реагентам относятся твердые или жидкие дорожно-эксплуатационные материалы, применяемые для борьбы с зимней скользкостью на автомобильных дорогах и улицах. Классификация противогололедных материалов приведена на рис. 1. В зависимости от используемого сырья и его происхождения противогололедные материалы (ПГМ) делят на три группы: 1 - химические, 2 — фрикционные, 3 - комбинированные, которые выпускают в твердом или жидком виде.

^{*)} ПСС - пескосоляная смесь.

Нами проведен сравнительный анализ комбинированных противогололедных реагентов:

^{**)} ПГС - песчано-гравийная смесь.

- 1. Традиционная пескосоляная смесь на основе NaCl (галит) и карьерного песка.
- 2. Новая антигололедная композиция, основу которой составляют MgCl₂*6H₂O (бишофит) и глауконит.

В таблицах № 1 и № 2 представлен минералогический, химический состав солей и фрикционных материалов, используемых и рекомендованных к применению на проезжей части дорог, тротуаров.

Таблица № 1 Минералогический состав солей, применяемых и планируемых к внедрению на объектах дорожного хозяйства

NaCl, в %		MgCl ₂ *6H ₂ O, в % (масс.)	
Хлористый натрий	96,15	Бишофит	88-99
Кальций-ион	0,18	Карналлит	0,1-55
Магний-ион	0,10	Кизерит	0,1-2,8
Сульфат-ион	0,27	Бромистый	0,45-0,98
		магний	
Нерастворимый в	1,45	Ангидрит	0,1-0,7
воде остаток			
Влага	2,85	Галит	0,1-0,4
Массовая доля	-		
антислеживателя			

В ископаемом состоянии бишофит встречается в виде соляной зернисто-кристаллической породы. В чистом виде кристаллы бишофита водянопрозрачные, но могут иметь белую, розовую и бурую окраску в зависимости от примесей. Бишофит имеет горьковато-соленый острый вкус, твердость его 1,5, удельный вес 1,59-1,61 г/см³, электропроводен, молекулярная масса 203,31; кристаллическая форма — моноклинная, температура кипения 150 0 C. Растворимость в г на 100 г холодной воды (20 0 C) — 306, горячей воды (100 0 C) — весьма растворим [2].

Таблица № 2 Химический состав фрикционных материалов

Песок карьерный, в %		Глауконитовый песок, в %	
SiO_2	96-97	Al_2O_3	$7,55 \pm 0,17$

Na ₂ O+K ₂ O	не более 0,18	CaO	$0,96 \pm 0,07$
SO_3	ниже 0,005	Fe_2O_3	$17,17 \pm 0,23$
		FeO	$2,19 \pm 0,13$
		H_2O+	$5,58 \pm 0,17$
		H ₂ O-	$2,52 \pm 0,13$
		K_2O	$7,94 \pm 0,12$
		MgO	$4,46 \pm 0,12$
		MnO	$0,008 \pm 0,002$
		Na_2O	$0,04 \pm 0,01$
		P_2O_5	$0,37 \pm 0,03$
		SiO_2	$50,9 \pm 0,3$
		P	1600 (мкг)

Физические и механические свойства песка карьерного.

Класс песка І-ІІ. Модуль крупности — 1,5-1,74. Коэффициент крепости — 0,5. Влажность песка — 2,80-3,0 %. Содержание глинистых и пылевидных частиц не более 2 % размером 0,005 мм. Цвет — желтовато-светлый. Удельная эффективная активность естественных радионуклидов не более 14,76 Бк/кг.

<u>Глауконитовый песок</u> обычно встречается в виде микроагрегатных зерен размером от 0,01 до 0,8 мм. Глауконит обладает сорбционными свойствами, т. к. его емкость катионного обмена изменяется от 420 до 550 мг/экв на 1 грамм навески. Глауконит обладает удельным весом 1,7-1,9 г/см³, пористость 20-25 %, твердость 1,3-2,0, плотность 1,8-3,0. Область химической устойчивости pH = 1-10 [3, 4].

Комбинированные антигололедные реагенты должны выполнять одновременно функции фрикционных и химических ПГР.

Таблица № 3 посвящена анализу выполняемых антигололедных функций применяемым реагентом (NaCl+песок) [5, 6] и разработанной экокомпозицией (MgCl₂*6H₂O+глауконит).

Таблица № 3 Эффективность противогололедных материалов

№	Функции	NaCl+песок	MgCl ₂ *6H ₂ O+
Π/Π			глауконит
1.	Понижение температуры замерзания	до — 21	до – 40
	воды, "С		

2	Vокоранна пларлання спажно		Экомомический ра 10 минит		
2.	Ускорение плавления снежно-		Экокомпозиция за 10 минут		
	ледяных отложений на дорожных		растаивает вдвое больше льда,		
	покрытиях		чем традиционная пескосоляная		
			смесь, при вреде окружающей		
	·		среде ниже более чем в 3 раза		
3.	Проникновение сквозь	- 2°C	27,6	27,5	
	слои снега и льда,	- 5 ⁰ C	12,1	12,5	
	разрушая	0			
	межкристаллические	- 10 ⁰ C	6,4	7,9	
	связи, и снижать силы их	-20°C	3,5	5,2	
	смерзания с дорожным	-20 C	3,3	J, \angle	
	покрытием, г/г				
4.	Быть технологичными	при	Применяемый в	ЭКОКОМПОЗИЦИИ	
	хранении, транспортиро	-	глауконито		
	применении	2110 11	предотвращает с		
	применении		предотвращает с	леживание ин т	
5.	Не увеличивать эколог	Не увеличивать экологическую		ому составу	
	нагрузку [7] на окружающую		бишофит в 1,75	•	
	природную среду (зеленые		меньше хлора		
	насаждения) и не оказывать		натрия и в 1,83 р	_	
	токсичного действия на человека и		хлорид кальция, а поскольку		
	животных	iobena ii	максимальная температура		
	, Alibo Ilibia			1 11	
			замерзания раствора антиобледенителя на порядок		
			ниже, то его расход на обра-		
			ботку 1 м ² будет меньше.		
			С применением новой		
			_		
			композиции уменьшается и		
			количество хлора в окружающей среде более чем в		
6.	Ho programmer va		3,2 р		
0.	Не вызывать увеличения		Антигололедная экокомпозиция		
	агрессивного воздействия на металл,		содержит двойной суперфосфат, являющийся		
	бетон, кожу, резину				
			ингибитором н	* * '	
			позволяет корродировать		_
			кузовную сталь	-	
			меньше, чем г		
			смесь, и лиші		
			больше, чем во	одопроводная	
			ВОД		
7.	Обладать сво	йствами,	Бактерицидн		
	препятствующими уве.	личению	бишофита и с	-	
	запыленности воздуха и загр	рязнения	свойства гла	уконита по	
	придорожной полосы		отношению	к тяжелым	

_	
	металлам, нефтепродуктам и др.
	веществам делают
	экокомпозицию экологически и
	санитарно-эпидемиологически
	безопасной [8].

Из таблицы № 3 следует, что применение разработанной и предлагаемой к внедрению экокомпозиции на объектах дорожного хозяйства является более целесообразным с точки зрения экологической, технической безопасности [9, 10].

Литература:

- 1. Требования к противогололедным материалам [Текст] / ОДН 218.2.027-2003. М., 2003.
- 2. Салех Ахмед, И.Ш. Волгоградский бишофит. Возможности освоения, глубокой переработки и использование природного бишофита [Текст] / И.Ш. Салех Ахмед. Волгоград: Перемена, 2010 432 с.
- 3. Колодницкая, Н.В. Разработка и обоснование технологий обеспечения экологической безопасности городского хозяйства при рекультивации урбанизированных территорий [Текст]: дисс. канд. техн. наук: 05.23.19: защищена 24.02.2012: утв. 23.07.2012 / Колодницкая Наталья Владимировна Волгоград, 2012. 177 с. Библиогр.: С. 159.
- 4. Пат. 2442668 РФ, МПК В 09 С 1/10, А 01 N 25/32. Препарат для биологической очистки почвы, загрязнённой хлорорганическими веществами, свойственными выбросам химического предприятия / Г.К. Лобачева, Н.В. Колодницкая, В.М. Осипов, А.М. Салдаев; ГОУ ВПО "Волгогр. гос. ун-т". 2012.
- 5. Wilfrid, A. Nixon Sixth international symposium on snow removal and ice control technology / A. Nixon Wilfrid. Washington: Doubletree Spokane City center Spokane, 2004. 667 p.

- 6. Stephen J. Drschel Salt brine blending to optimize deicing and anti-icing performance. Final report / J. Drschel Stephen. Minnesota Department of Transportation Research Services, 2012.
- 7. Гейдор, В.С., Чешев, А.С. Экономический механизм устойчивого развития городских территорий [Электронный ресурс] // "Инженерный вестник Дона", 2013, № 2. Режим доступа: http://ivdon.ru/magazine/archive/n1y2009/250 (доступ свободный) Загл. с экрана. Яз. рус.
- 8. Лобачева, Г.К. Новая технология биологической очистки загрязнённой почвы усиленное биовосстановление на месте (in situ) препаратом на основе природного сорбента [Текст] // Труды Кубанского государственного аграрного университета, 2010. Вып. 6. С. 190-194.
- 9. Кирясов, А.С. Формирование эффективной транспортно-логистической системы регионального уровня на основе концепции устойчивого развития [Электронный ресурс] // "Инженерный вестник Дона", 2013, № 1. Режим доступа: http://ivdon.ru/magazine/archive/n1y2009/250 (доступ свободный) Загл. с экрана. Яз. рус.
- 10. Власенко, Т.В. Оценка эффективности рациональной организации и использования городских территорий [Электронный ресурс] // «Инженерный вестник Дона», 2012, № 4 (часть 1). Режим доступа: http://ivdon.ru/magazine/archive/n4p1y2012/1070 (доступ свободный) Загл. с экрана. Яз. рус.