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Аннотация: Electrocardiogram (ECG)-based biometrics have emerged as a promising approach 
for robust identity authentication, offering intrinsic liveness detection and resistance to spoofing. 
This paper presents a highly technical implementation of an ECG-based biometric identification 
system utilizing deep learning models for both verification and closed-set identification. We 
propose a dual-model architecture comprising a Siamese neural network for one-to-one 
verification and a deep convolutional neural network (CNN) for one-to-many classification. The 
methodology includes comprehensive signal preprocessing, data augmentation to simulate 
physiological variability, and feature extraction tailored to ECG characteristics. Experimental 
evaluation on benchmark ECG datasets demonstrates the effectiveness of the proposed system. 
The Siamese network achieves high verification accuracy with low equal error rates, while the 
CNN classifier attains state-of-the-art identification accuracy (exceeding 98% on average) across 
enrolled subjects. Key performance metrics—accuracy, precision, recall, and F1-score—indicate 
robust performance, outperforming several existing biometric methods. The results highlight the 
viability of ECG-based authentication in real-world applications. We discuss challenges such as 
inter-user variability, signal noise, and cross-session changes, and outline future enhancements 
including continuous authentication and multi-modal biometric fusion.  
Ключевые слова: biometric authentication, electrocardiogram (ECG), siamese neural network, 
convolutional neural network, qrs complex, signal processing. 

Introduction 

In an era of heightened security and privacy concerns, advanced biometric 

authentication systems are in increasing demand. Traditional biometrics like 

fingerprints and facial recognition, while popular, face notable vulnerabilities: 

fingerprints can be fabricated and facial recognition can be impeded by external 

factors [1]. These limitations drive the search for more secure and resilient 

modalities. The electrocardiogram (ECG) has recently attracted considerable 

attention as a biometric trait. Unlike external biometrics [2], ECG signals are 

generated internally by the cardiac cycle and thus confirm that the subject is “real 

and alive”. Each individual’s ECG is highly distinctive, reflecting unique cardiac 

physiology; even genetically similar individuals exhibit subtle differences in their 

heartbeat waveforms. Moreover, ECG-based authentication inherently provides 

liveness detection, since a valid ECG can only be obtained from a living subject with 
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a beating heart. These properties make ECG an appealing biometric for high-security 

applications [3]. ECG biometrics leverage the electrical signature of heart activity, 

typically recorded via electrodes on the body. Fig. 1b illustrates a segment of an 

ideal ECG waveform, comprising the characteristic P wave, QRS complex, and T 

wave of a normal cardiac cycle (Fig. 1a shows standard electrode placement for ECG 

acquisition). The temporal and morphological features of these waveform 

components vary from person to person due to individual differences in cardiac 

structure and electrophysiology. Early studies [4] recognized that ECG signals are 

unique, present in all living individuals, and difficult to forge. These traits position 

ECG as a compelling biometric candidate for applications ranging from secure 

access control to continuous user verification in wearable devices [5].  

 
Fig. 1a. Electrode Placement for ECG Acquisition,  

Fig.1b  Segment Representation of ECG [6] 

The implementation of ECG-based authentication techniques faces various 

technical difficulties. A user's physiological state creates variable conditions 

involving altered waveform intervals linked to exercise or stress in addition to signal 

shape variations caused by electrode placement or noise sources [6]. To obtain 

reliable authentication systems it is crucial to address this variability [7]. Previous 

ECG biometric methods struggled with adding new users and faced data imbalance 

issues. The proposed system uses deep learning with two modules: a Siamese 

network for verification without retraining and a deep CNN for closed-set 
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identification. It supports both individual verification and multi-user recognition, 

with robust preprocessing and augmentation.  

Literature Review 

ECG Biometrics in Context: Biometric recognition has developed as a well-

established scientific field which employs multiple forms of human biological 

markers (fingerprint, face, iris, voice, etc.) [8]. The concept of biometric recognition 

gets extended through ECG-based biometrics by utilizing unique cardiac electrical 

activity patterns of individual subjects. Research over the past two decades has 

confirmed the feasibility of ECG identification. Kim S.-K. [9] provided one of the 

pioneering demonstrations that ECG characteristics can accurately distinguish 

individuals. Subsequent studies explored numerous features and methodologies, yet 

no single dominant approach emerged in early literature. A survey [10] of 160 ECG 

biometric studies reported identification accuracy around 94.95% and verification 

EER of 0.92% [11], highlighting ECG’s strong potential and variability among 

biometric traits as shown in Table 1. 

Table 1 

Main benefits and drawbacks of the electrocardiogram compared with other traits 

[12] 

Trait Benefit Drawback 

Electrocardiogram 
(ECG) 

Universality, Hidden 
nature, Simple 

acquisition 

Requires contact, 
Variability over time 

Electroencephalogram 
(EEG) 

Universality, Hidden 
nature 

Expensive equipment, 
Vulnerability to noise, 
Variability over time 

Face Easily measurable, 
Affordable equipment 

Easy circumvention, 
Depends on face 

visibility and lighting 

Fingerprint High performance, 
Permanent over time Requires contact 
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Fiducial vs. Non-Fiducial Methods: Traditional ECG biometric techniques are 

often categorized by their feature extraction strategy [8]. Fiducial methods rely on 

detecting characteristic fiducial points in the ECG cycle (typically P, Q, R, S, T 

waves) and deriving features such as amplitudes, intervals, and angles between these 

points [3]. For example, the amplitudes of the R wave or distances between P and R 

peaks might form a feature vector unique to each person. In contrast, non-fiducial 

methods forego explicit wave delineation and instead analyze the ECG waveform in 

its entirety (or large segments of it), often using transforms or autoregressive 

coefficients to capture morphology [13]. A hybrid approach sometimes termed 

partially fiducial combines both, using some fiducial features alongside global signal 

features [14]. Early implementations of fiducial techniques demonstrated the 

concept of ECG identification, but they could be sensitive to precise detection of 

waveform onsets and offsets [15]. Non-fiducial approaches [16], including statistical 

and frequency-domain methods (e.g., wavelet transforms or correlation methods), 

offered an alternative by treating the raw signal as a unique “fingerprint”. However, 

differences in recording conditions and physiological changes posed challenges for 

both approaches [17].  

Advances with Machine Learning: The advent of machine learning, and in 

particular deep learning, introduced powerful tools for automatic feature learning 

from ECG data. Various deep neural network (DNN) architectures have been 

explored for ECG biometrics [18]. Convolutional Neural Networks (CNNs) have 

been especially popular due to their ability to learn spatially local patterns (in time-

series, this translates to waveform shapes) that repeat across heartbeats [19]. 1D-

CNN models can take a segment of ECG as input and output a classification, 

implicitly learning features such as the QRS morphology or T-wave shape that 

differentiate individuals [20, 21]. Recurrent Neural Networks, particularly Long 

Short-Term Memory (LSTM) networks [22], have also been applied to model the 

temporal dependencies in ECG signals. LSTMs can capture sequential patterns 
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across heartbeats or within the cardiac cycle, addressing the time dynamics of the 

signal. Hybrid architectures combining CNN and LSTM layers have achieved 

classification accuracies exceeding 90% on various datasets by exploiting both 

spatial (morphological) and temporal features [23]. In such approaches, the CNN 

layers extract per-beat features which are then fed into LSTM layers to account for 

beat-to-beat variations [24, 25]. 

Several studies report impressive results using deep networks. For instance, 

Lodhi B et al. [26] and others showed that deep CNN or CNN-LSTM classifiers can 

reach high identification accuracy on public ECG databases. More recently, Mendes 

M et al. [27] achieved ~99% classification accuracy using single-heartbeat CNN 

models, and even 100% accuracy when fusing multiple heartbeats, on an 

experimental dataset. Their Siamese network approach also yielded an identification 

EER as low as 1.29%, highlighting the promise of deep learning in verification tasks. 

Similarly, Nwankpa C et al. [28] employed a Siamese architecture but with ECG 

spectrogram images as input, obtaining about 86.4% accuracy in classifying 

individuals. Zhou et al. [29] proposed an ensemble Siamese network and reported 

93.6% and 96.8% authentication accuracy on the ECG-ID and PTB datasets 

respectively, with EER ~1.7%. These results show a clear improvement over earlier 

template-matching or feature-engineered methods, which typically achieved 80–

90% accuracy. Deep learning models automatically discover subtle waveform 

patterns distinctive to each person, and they often remain effective despite moderate 

noise or variability [30, 31]. 

Methods 

System Architecture Overview: The proposed ECG biometric system shown 

in Fig. 2 includes two components: a Siamese Neural Network for verification and 

a Deep CNN for closed-set identification. During enrollment, user ECG recordings 

are preprocessed and used to train the CNN and generate reference features for the 

Siamese network. During operation, new ECG signals are processed similarly. In 
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identification mode, the CNN predicts the user identity. In verification mode, the 

Siamese network compares the input with stored templates to compute similarity 

scores and verify claims.  

 
Fig. 2. Adaptive Authentication Biometric System Proposed Model 

Siamese Neural Network for Verification: For one-to-one verification, we 

employ a Siamese neural network architecture [32]. The Siamese network consists 

of two identical subnetworks (twin deep neural networks) that share weights [33]. 

Each subnetwork takes an ECG segment as input and outputs a feature vector 

(embedding) in a learned feature space [34, 35, 36]. During training, the network is 

fed with pairs of ECG segments along with a label indicating whether the pair 

belongs to the same person or not. The weight-sharing constraint forces the two 

branches to extract analogous features, so that the distance between the two output 

feature vectors can be used as a measure of similarity [37]. In our design, each branch 

is a 1D-CNN feature extractor. We employ a sequential architecture with eight 1D 

convolutional layers per branch, each using ReLU activations and increasing filter 
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sizes (from 32 to 256). Small kernels (size 3) focus on detailed ECG features, with 

max-pooling layers after each pair to reduce temporal resolution while preserving 

key patterns [38]. Flattened outputs feed into dense layers (128 or 256 units), 

generating feature embeddings. The Siamese network uses these embeddings, 

compares them via Euclidean distance to stored templates, and determines user 

enrollment status. 

 
Fig. 3. Proposed Approach of the Verification Task 

Deep CNN for Closed-Set Identification: In addition to verification, our 

system performs closed-set identification using a deep CNN classifier. This model 

treats the biometric task as a multi-class classification problem: given an input ECG 

segment, predict which enrolled user (out of N possible identities) it belongs to. We 

design a 1D convolutional neural network inspired by architectures used in ECG 

classification literature [39]. The network input is a preprocessed ECG segment (as 

described earlier). The architecture begins with a series of convolutional layers to 

extract discriminative patterns [40]. The CNN model uses 4–6 convolutional layers 

with increasing filters (32 to 128) and small kernels (3–5) to capture local ECG 

waveforms. Each layer has batch normalization and ReLU activation. Max-pooling 

reduces sequence length. Flattened outputs pass through dense layers with dropout 

to prevent overfitting. The final softmax layer classifies enrolled users.  
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Fig. 5. Proposed Approach of the Authentication Task 

Results 

Experimental Setup: We evaluated the proposed ECG biometric system on 

a benchmark dataset used in this domain: the ECG-ID Database. The ECG-ID 

Database contains 310 recording sessions from 90 subjects (44 male, 46 female), 

each recording consisting of a single lead ECG sampled at 500 Hz. From each 

record, we extracted multiple heartbeat segments for training and testing, using lead-

I for consistency [41]. Table 2 summarizes the datasets.  

Table 2 

Overview of the Dataset 

Dataset # Persons Sampling Rate Activity Electrode 
ECG-ID 90 500 Hz Sitting Wrist 

 

We applied 5-fold cross-validation, trained models in TensorFlow with GPU 

acceleration, used Adam optimizer (learning rate 0.00001), and applied early 

stopping based on validation loss to avoid overfitting. 

Hyperparameters optimize the training success of the hybrid SNN-CNN deep 

learning model for ECG-based authentication. Key parameters include the loss 

function, optimizer, batch size, learning rate, and epochs, significantly boosting 

efficiency while ensuring adaptability if the primary objective encounters challenges 

as shown in Table 3. 
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Table 3 

Hyperparameters Settings 

Hyperparameter SNN Network CNN Network 
Loss Functions Categorical Cross 

Entropy 
Categorical Cross 

Entropy 
Learning Rate 0.00001 0.00001 

Batch Size 64 64 
Epochs 100 100 

Optimizer Adam Adam 
 

Dataset Preprocessing and Augmentation: Data preparation would enhance 

quality data analysis on ECG-ID dataset signals by effectively cleaning the initial 

raw signals. These are the high pass set up to remove, baseline drift and notch filter 

to remove power line interference along with resampling. Preprocessing also 

standardizes the ECG signals, and quality control that is used in order to filter 

artifacts also forms part of it [42]. Data augmentation shown in Fig. 6 enlarges the 

dataset, increases the stability and optimizes performance through the introduction 

of variability. Scaling, rotation, flipping, and time-shifting are the techniques of 

diversification of the dataset. 

 
Fig. 6. Data Augmentation Techniques 

Verification Results: The Siamese network was evaluated on the task of 

verifying whether two ECG segments belong to the same person. We measured 
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verification accuracy as well as EER by varying the similarity threshold. On ECG-

ID, the Siamese model attained an average verification accuracy of about 97%, at 

the optimal threshold (these correspond to the values where false acceptances and 

false rejections are balanced). The EER was approximately 1.5–2% , meaning that 

at the threshold where false accept = false reject, the error rate is very low (~1 in 50 

comparisons might be misclassified). These results are in line with recent studies: 

Zhou et al. [29] reported EERs of 1.76% on ECG-ID and 1.69% on PTB using a 

similar Siamese network, and our results are comparable. We focused on single-beat 

verification for real-time use. At the threshold maximizing F1-score, we achieved 

~98% precision and ~99% recall (F1 ≈ 99%) on ECG-ID, with a 2–3% FAR 

adjustable by threshold tuning [43].  

Classification Results: The CNN classifier achieved high accuracy on both 

datasets. Over the cross-validation folds on ECG-ID, the average closed-set 

identification accuracy was 97–99%, meaning nearly all heartbeat segments were 

correctly attributed to the right individual. Table 4 presents the detailed performance 

metrics for the identification model on ECG-ID. We observe a precision of 98% and 

recall of 99%, yielding an F1-score of 99%. The high precision indicates very few 

false identifications (mislabeling one person as another), and the high recall shows 

the model rarely misses the correct identity when it is in the database.  

Table 4 

Performance of the CNN Identification Model on ECG-ID (90 subjects, 5-fold CV) 

Metric Value (%) 
Accuracy 98.85 
Precision 98 

Recall (TPR) 99 
Recall (TPR) 100 

F1-Score 99 
The confusion matrix shown in Fig. 8 indicates that most misclassifications 

occur between a few specific individuals with somewhat similar ECG morphologies; 

this could potentially be mitigated by adding more training data for those individuals 
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or using additional leads. Several samples predicted by the model are given in Fig. 

9, which shows the applicability of the model for distinguishing between instances. 

 

Fig. 8. Confusion Matrix of the Proposed Authentication Model 

 

Fig. 9. Predicted samples from authentication (CNN) model 

The ROC curve can then be used to evaluate the model’s effectiveness in user 

authentication with ECG data in terms of decision thresholds. The Area Under the 

Curve (AUC) is an estimate of the overall model’s performance. This indirectly 

provides a possibility of selecting an optimal decision point depending on the needs 



Инженерный вестник Дона, №6 (2025) 
ivdon.ru/ru/magazine/archive/n6y2025/10167 
 

 

 

© Электронный научный журнал «Инженерный вестник Дона», 2007–2025 

of a particular application having both sensitivity and specificity in trade off. If your 

model’s ROC curve is located near the top left corner, you have a strong model that 

is great at both high sensitivity and specificity. Fig. 10 shows performance of the 

proposed model at threshold value. 

 

Fig. 10. ROC Curve 

Table 5 

Performance comparison of the proposed model and other models 

Authors Database Methods Accuracy 
Barros et al. [14] PhysioNet RF classifier 92 

Su et al [15] ECG-ID DCA 94 

Zhang et al.[12] ptbdb, mitdb, 
nsrdb Matching process 97.6 

Hammad et al [17] MIT-BIH Feed-Forward Neural 
Network (FFNN) 95 

Kim et al. [10] ECG-ID Euclidean detector 94.3 
Zhao et al [31] ECG-ID CNN 96.6 

Blasco et al. [13] 
Low-cost 
sensors 

biometrics 

One-class classifier 
density estimation 98 

Agrawal et [6] PTB CNN - LSTM 98 
Proposed Solution ECG-ID SNN - CNN 98.8 
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From the results, we see that it is efficient for ECG based authentication and 

could be better than other advanced algorithms. The reliability and accuracy of the 

model may radically change the existing ECG-based authentication systems, 

primarily in security fields. As indicated in Table 5 above  is a comparison of the 

proposed model with other architectures. 

Conclusion 

The proposed methodology introduces a significant advancement in ECG-

based biometric systems for real-time authentication in IoT telehealth applications. 

By integrating a Siamese Neural Network (SNN) for verification and a 

Convolutional Neural Network (CNN) for authentication, this hybrid approach 

enhances system reliability, security, and adaptability. Unique biometric signatures, 

resistant to replication or theft, offer superior security compared to traditional 

methods. 

Separating authentication and verification models provides flexibility, 

scalability, and optimized performance across diverse scenarios. Lightweight 

models suit resource-constrained settings, while advanced models cater to high-

security environments. This modularity minimizes errors, supports targeted 

optimization, and facilitates continuous improvement. 
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