

Моделирование положения центра тяжести самолета в различных режимах полета

Ю. А. Новикова, Г.В. Терещенко

Санкт-Петербургский государственный университет аэрокосмического приборостроения

Аннотация: Статья посвящена разработке численных методов определения положения центра тяжести и запаса статической устойчивости самолета в полете. Для выполнения расчетов был разработан ряд математических моделей. На основе анализа движения самолета, как твердого тела, синтезированы численные методы определения положения центра тяжести и вычислены их погрешности. Сравнение погрешностей различных методов позволило сделать вывод о целесообразности применения метода, основанного на использовании информации о запасе топлива.

Ключевые слова: моделирование положения центра тяжести, численный анализ положения центра тяжести, моменты инерции самолета, свободные колебания, выработка топлива.

В процессе полета самолёта положение центра тяжести летательного аппарата не остается постоянным. Причин, вызывающих изменение положения центра тяжести, много, и одной из основных является выработка топлива. На современных самолетах топливо составляет примерно 30-60% от взлетного веса [1-3], и его выработка изменяет положение центра тяжести X_T и момент инерции самолета *J*. В полете выработку топлива ведут по программе, обеспечивающей сохранение X_T в допустимых пределах. При этом для контроля желательно иметь информацию о текущем значении X_T [4]. В аварийных ситуациях (течь бака, остановка двигателя и т. и.) знание положения центра тяжести необходимо для правильной оценки обстановки и принятия мер по выравниванию самолета и обеспечению его устойчивости [5-7].

Прежде чем переходить к анализу возможных численных методов определения $X_{\rm T}$ в полете, рассмотрим явления, связанные с изменением $X_{\rm T}$ и качественно, оценим возможную информацию о значении $X_{\rm T}$.

Координата центра тяжести самолета по определению равна:

$$X_{\rm T} = \frac{\sum_{i=1}^{n} m_{\rm Hi} x_{\rm Hi} + \sum_{j=1}^{k} m_{\rm Bj} x_{\rm Bj}}{\sum_{i=1}^{n} m_{\rm Hi} + \sum_{j=1}^{k} m_{\rm Bj}},$$
(1)

где *m*_{H*i}</sub> - масса неизменяемого элемента самолета или груза;</sub>*

*m*_{B*i*} - масса переменной части груза или топлива;

x_i - координата *i*-го неизменяемого элемента;

x_i - координата *j*-го переменного элемента.

В уравнения сил координата центра тяжести не входит, поэтому достаточно рассмотреть уравнения моментов:

$$J_{x}\dot{\omega}_{x} + (J_{z} - J_{y})\omega_{y}\omega_{z} + J_{xy}(\omega_{x}\omega_{z} - \dot{\omega}_{y}) = M_{x}$$

$$J_{y}\dot{\omega}_{y} + (J_{x} - J_{z})\omega_{x}\omega_{z} - J_{xy}(\omega_{y}\omega_{z} - \dot{\omega}_{x}) = M_{y}$$

$$J_{z}\dot{\omega}_{z} + (J_{y} - J_{x})\omega_{x}\omega_{y} + J_{xy}(\omega_{y}^{2} - \omega_{x}^{2}) = M_{z}$$
(2)

Где ω_x , ω_y , ω_z - составляющие угловой скорости самолета относительно центра тяжести;

 M_x, M_y, M_z - моменты всех внешних сил, действующих на самолет;

 J_x, J_y, J_z - моменты инерции относительно осей координат.

Из уравнений (1) и (2) следует три метода определения цента тяжести *X*_T:

1) непосредственное вычисление по (1);

 решение систем (2) для установившегося режима, когда все моменты сбалансированы;

3) решение системы (2) для случая возмущенного движения.

Расчет положения центра тяжести непосредственным вычислением

Можно считать, что m_{Hi} , m_{Bj} , x_{Hi} , x_{Bj} в выражении (1) известны точно, а погрешность в определении X_T определяется погрешностью в m_{Bj} тогда:

$$\Delta X_{\rm T} = \sum_{j=1}^{k} \frac{dX_{\rm T}}{dm_{\rm Bj}} \cdot \Delta m_{\rm Bj},\tag{3}$$

учитывая, что:

$$\sum_{j=1}^{k} m_{\mathrm{B}j} + \sum_{i=1}^{n} m_{\mathrm{H}i} = M$$

$$\sum_{j=1}^{k} \Delta m_{\mathrm{B}j} = \Delta m_{\mathrm{B}}$$

$$(4)$$

где М - масса самолета.

Продифференцировав (1), выражение (3) можно привести к виду:

$$\Delta X_{\rm T} = \frac{\Delta m_{\rm B}}{m_{\rm Bmax}} \sum_{j=1}^{k} \frac{\left(x_{\rm Bj} - X_{\rm T}\right) m_{\rm Bjmax}}{M}.$$
 (5)

Выражение (5) определяет максимальную погрешность в определении центра тяжести самолета при определенной относительной погрешности $\frac{\Delta m_{\rm B}}{m_{\rm Bmax}}$ в определении массы переменных элементов (топлива и грузов).

При достаточно большом числе переменных масс допустимо воспользоваться вероятностными характеристиками погрешностей [8]. Вполне приемлемой оценкой может служить среднеквадратическая погрешность:

$$\sigma_{X_{\rm T}} = \frac{1}{M} \sqrt{\sum_{i=1}^{k} \frac{\Delta m_{\rm Bj}}{m_{\rm Bj\,max}} (x_i - X_{\rm T})^2 m_{\rm Bj}^2}.$$
 (6)

Из формул (5) и (6) видно, что расчет погрешностей можно производить только для конкретного самолета. В табл. 1 приведены результаты расчета для нескольких серийных самолетов. При вычислениях за переменную массу принималось только топливо.

Определение центра тяжести на основе решения системы уравнений для установившегося режима

При установившемся горизонтальном полете, левые части уравнений (1) равны нулю и система распадается на независимые уравнения.

Ниже рассматриваются условия равновесия моментов сил, действующих в плоскости симметрии самолета, которая при горизонтальном

полете совпадает с вертикальной плоскостью. Коэффициент момента, как известно, имеет вид [9]:

$$m_{z} = m_{z\delta ro} - \left(X_{\phi r\delta o} - X_{T}\right)C_{y} - kA_{ro}a_{ro} \cdot \left(\alpha_{ro} + \frac{C_{y}}{C_{y}^{\alpha}} + \varphi - \varepsilon_{\phi} - DC_{y} + n_{B}\delta_{B}\right),$$
(7)

где *m*_{zбго} - коэффициент момента самолета без горизонтального оперения;

*C*_v - коэффициент подъемной силы;

k - коэффициент торможения потока;

ф - угол установки крыла;

ε_ф - скос потока от фюзеляжа;

*DC*_y - скос потока от крыла;

*n*_в - эффективность руля высоты;

δ_в - угол отклонения руля высоты.

Дифференцирование (7) по *С*_у дает выражение:

$$m_z^{C_y} = -\left(X_{\phi r \delta o} - X_{\rm T}\right) - kA_{\rm ro}a_{\rm ro}\left(\frac{1}{C_y^{\alpha}} - D\right).$$
(8)

После подстановки (8) в (7):

$$m_{z} = m_{z\delta ro} + m_{z}^{C_{y}}C_{y} - kA_{ro}\alpha_{ro}(\alpha_{ro} + \varphi - \varepsilon_{\phi} + n_{B}\delta_{B}).$$
(9)

Из уравнения (9) видно, что существует однозначная связь между положением центра тяжести и углом отклонения руля высоты.

Обозначив:

$$m_{z0} = m_{z6ro} - kA_{ro}\alpha_{ro}(\alpha_{ro} + \varphi - \varepsilon_{\phi} + m_{B}\delta_{B}),$$

можно записать:

$$m_z = m_{z0} + m_z^{C_y} C_y,$$

или при равновесии:

$$m_z^{C_y} = -\frac{m_{20}}{C_y}$$

Зная величину m_{z0} которая является функцией Маха, конструктивных параметров самолета и положения руля высоты и вычисляя $C_y = \frac{G}{S \cdot q}$ можно определить $m_z^{C_y}$ и $X_{\rm T}$.

Основными параметрами, влияющими на погрешность, являются погрешность построения функции m_{z0} ; погрешность в измерении δ_B ; погрешность в измерении q и G.

Выражение для определения погрешности может быть записано в виде:

$$\Delta m_z^{C_y} = \frac{\partial m_{z0}}{\partial \delta_B} \Delta \delta_B + \sum_{i=1}^n \frac{\partial m_{z0}}{\partial \eta_i} \Delta \eta_i + \frac{\partial m_z^{C_y}}{\partial q} \Delta q + \frac{\partial m_z^{C_y}}{\partial G} \Delta G$$
(11)

где через η_i обозначены аэродинамические и конструктивные характеристики самолета, или:

$$\Delta m_z^{c_y} = \frac{kA_{\rm ro}a_{\rm ro}n_{\rm B}}{C_y}\Delta\delta_{\rm B} + \frac{m_{z0\rm max}}{C_y} \cdot \frac{\Delta m_{z0a}}{m_{z0\rm max}} + \frac{q_{\rm max}}{q} m_z^{C_y} \frac{\Delta q}{q_{\rm max}},\tag{12}$$

где

$$\Delta m_{z0a} = \sum_{i=1}^{n} \frac{\partial m_{z0}}{\partial \eta_i} \Delta \eta_i$$

Ошибки, рассчитанные по (12), для нескольких самолетов приведены в табл. 1.

Необходимо отметить, что влияние составляющих на суммарную ошибку будет неодинаковым при различных режимах полета. Это учитывается в процессе расчета.

Положение руля высоты может быть измерено как непосредственно по отклонению от нулевого, так и по усилиям на ручке управления и нагрузкам в элементах привода. Усилие на ручке связано с углом поворота руля высоты следующей формулой [10]:

$$P_{\rm B} = -k_{\rm III}S_{\rm B}b_{\rm B}kq \left(m_{\rm III}^{\alpha}\alpha_{\rm ro} + m_{\rm III}^{\delta_{\rm B}}\delta_{\rm B} + m_{\rm III}^{\tau_{\rm B}}\cdot\tau_{\rm B}\right).$$
(13)

Расчет положения центра тяжести при неустановившемся режиме полета

Рассмотрим неустановившийся режим движения самолета и проанализируем те характеристики движения, которые зависят от положения центра тяжести. При рассмотрении, как и в предыдущем случае, движение принимается только в вертикальной плоскости.

Движение любой точки самолета может быть представлено в виде суммы движения центра тяжести и колебаний относительно его. Следовательно, определив параметры этих движений, можно найти и положение центра тяжести.

Частота собственных колебаний самолета зависит от положения центра тяжести. Следовательно, определив частоту (период) собственных колебаний, также можно найти и положение центра тяжести .

Параметром движения любой точки самолета, который может быть непосредственно измерен, является абсолютное ускорение \overline{W} . Данное ускорение определяется через ускорение центра тяжести \overline{W}_0 и относительное ускорение \overline{W}_{sp} в соответствии с равенством:

 $\overline{W} = \overline{W}_0 + \overline{W}_{\rm BD}; \qquad (14)$

или в проекции на вертикальную ось у:

$$W_{y} = W_{0y} + W_{\text{Bp.}y},$$

в свою очередь,

 $W_{gp.y} = \omega^2 (y - Y_T) + \varepsilon (x - X_T)$, где

ω - угловая скорость вращательного движения;

ε - угловое ускорение вращательного движения;

х - координата точки, в которой производится измерение ускорения.

Полагая смещение центра тяжести по вертикали равным нулю, можно записать:

$$W_{y} = W_{0y} + \varepsilon \left(x - X_{T} \right) \tag{15}$$

Измерив акселерометром ускорение в двух точках, можно составить систему уравнений:

$$W_{y1} = W_{0y} + \varepsilon \left(x_1 - X_T \right)$$

$$W_{y2} = W_{0y} + \varepsilon \left(x_2 - X_T \right)$$
(16)

которая не может быть решена, так как ее определитель равен нулю. Поэтому для нахождения $X_{\rm T}$ необходимо определять W_{oy} .

Ускорение центра тяжести W_{0y} создается разностью подъемной силы *Y* и веса самолета *G*.

$$W_{0y} = \frac{Y - G}{M} = \frac{C_{y}^{\alpha} \alpha Sq - G}{M}$$

$$W_{0y} = \frac{SqC_{y}^{\alpha} \alpha}{M} - q$$
(17)

Измерив $q = \frac{\rho v^2}{2}$, α – угол атаки, M - массу самолета и зная S и C_y ,

можно вычислить W_{0y} , а значит, и решить систему (16):

$$X_{T} = x_{1} - \frac{W_{y1}}{W_{y1} - W_{y2}} \left(x_{1} - x_{2}\right) + \frac{x_{1} - x_{2}}{W_{y1} - W_{y2}} \left(\frac{SqC_{y}^{\alpha}}{M} - q\right).$$
(18)

Полагая, что ускорения W_{y1} , W_{y2} и координаты x_1 , x_2 измеряются без ошибок, можно оценить ошибку в x_T от неточного измерения α , q и M следующим образом:

$$\Delta X_{\rm T} = \frac{q}{\varepsilon} \left(\frac{\Delta \alpha}{\alpha} + \frac{\Delta q}{q} \right) + \frac{q}{\varepsilon} \frac{\Delta M}{M}$$
(19)

Ориентировочно можно принять:

$$\frac{\Delta \alpha}{\alpha} = 0,02; \ \frac{\Delta q}{q} = 0,04; \ \frac{\Delta M}{M} = 0,02; \ \varepsilon = 0,035 \frac{1}{cM^2},$$

Тогда:

$$\Delta X_{\rm T} = \frac{9.8}{0.04} (0,02+0,04+0,02) \approx 19\,\text{M},$$

что и определяет неприемлемость этого метода расчёта.

Физический смысл этой погрешности заключается в том, что невозможно выделить небольшое касательное ускорение на фоне значительного ускорения центра тяжести.

Свободные колебания самолета с достаточной степенью точности представляются уравнением второго порядка относительно угла атаки:

$$J_2 \ddot{\alpha} + m_z^{\dot{\alpha}} \dot{\alpha} SSb + m_z^{C_y} C_y^{\alpha} = 0$$
⁽²⁰⁾

Частота затухающих колебаний определяется по известной формуле:

$$T = \sqrt{\frac{J_z}{q \cdot S \cdot b \cdot m_z^{C_y} \cdot C_y^{\alpha}}},$$
 (21)

учитывая, что $m_z^{C_y} = X_{\phi} - X_{T}$, можно получить:

$$X_{\phi} - X_T = \frac{J_z}{T^2 \cdot q \cdot S \cdot b \cdot C_y^{\alpha}}.$$
 (22)

Относительная погрешность в определении центра тяжести (при точных значениях *S* и *b*) определяется по формуле:

$$\frac{\Delta X_{\rm T}}{X_{\rm \phi} - X_{\rm T}} = \frac{\Delta J_z}{J_z} + \frac{2\Delta T}{T} + \frac{\Delta q}{q} + \frac{\Delta C_y^{\alpha}}{C_y^{\alpha}}.$$
 (23)

Результаты расчетов, выполненных для некоторых серийных самолетов, приведены в табл. 1.

Таблица № 1

Зависимость $\Delta X_{\rm T}$ в процентах от средней аэродинамической хорды (САХ) крыльев трех типов гражданский самолетов

№ п/п	Метод	$\Delta X_{ m T}$ в % от САХ		
	измерения х	Тип 1	Тип 2	Тип 3
1	2	3	4	5
1	По			
	положению	6,8	12,0	9,0
	руля высоты			
2	По нагрузке			
	на ручку	4,1	8	3,8
	управления			
	рулем высоты			

1	2	3	4	5
3	По периоду собственных колебаний самолета	3,1	7,2	3
4	Вычисление по запасу топлива и весу грузов	0,5	0,5	0,5

Расчеты производились при условии, что входная информация имеет погрешности:

$$\frac{\Delta q}{q_{\text{max}}} = 0,04; \ \frac{\Delta M}{M} = 0,08; \ \Delta p = 0,1\kappa z;$$
$$\Delta \delta = 0,3^{\circ}; \ \frac{\Delta J}{I} = 0,02; \ \frac{\Delta T}{T} = 0,01.$$

Все аэродинамические коэффициенты определены с погрешностью 5%.

Из анализа полученных в процессе вычислений результатов следует, что определение положения центра тяжести и коэффициента статической устойчивости в настоящее время с требуемой точностью 0,5% от САХ может быть выполнено только путем их вычисления по информации о запасе топлива.

Литература

- 1. Чепурных С. А. Эволюция изменения объема бакового пространства в планере самолета истребителя // Конференция «Актуальные проблемы авиации и космонавтики». Красноярск. 2019. С. 132-134.
- Langton R., Clark C., Hewitt M., Richards L. Aircraft fuel systems. Aerospace series. Chichester: John Wiley & Sons, Ltd., 2009. 351 p.
- Sadraey M. H. Aircraft design: a systems engineering approach. Chichester: John Wiley & Sons, Ltd., 2013. 800 p.

- 4. Barnard R., Philpott, D. Aircraft Flight: A description of the physical principles of aircraft flight Edinburgh: Pearson Education Limited, 2010. 385 p.
- Abzug M., Larrabee E. Airplane Stability and Control: A History of the Technologies That Made Aviation Possible. Cambridge: Cambridge University Press, 2002. 413 p.
- Nelson R. C. Flight Stability and Automatic Control. New York: McGraw-Hill, Cop, 1989. 284 p.
- 7. Кокунина Л. Х. Основы аэродинамики. М.: Транспорт, 1982. 197 с.
- Puri M., Ralescu D. Fuzzy random variables. // J. Math. Anal. Appl. 64. 1978. pp. 409-422.
- 9. Погосян М. А., Лисейцев Н. К. Проектирование самолетов. Москва: Инновационное машиностроение, 2018. 863 с.
- 10. Пчела И. В. Воздушные суда. Москва: Авиатека, 2015. 320 с.

References

- 1. Chepurnykh S. A. Konferentsiya «Aktualnye problemy aviatsii i kosmonavtiki». Krasnoyarsk. 2019. pp. 132-134.
- Langton R., Clark C., Hewitt M., Richards L. Aircraft fuel systems. Aerospace series. Chichester: John Wiley & Sons, Ltd., 2009. 351 p.
- 3. Sadraey M. H. Aircraft design: a systems engineering approach. Chichester: John Wiley & Sons, Ltd., 2013. 800 p.
- 4. Barnard R., Philpott, D. Aircraft Flight: A description of the physical principles of aircraft flight Edinburgh: Pearson Education Limited, 2010. 385 p.
- Abzug M., Larrabee E. Airplane Stability and Control: A History of the Technologies That Made Aviation Possible. Cambridge: Cambridge University Press, 2002. 413 p.
- Nelson R. C. Flight Stability and Automatic Control. New York: McGraw-Hill, Cop, 1989. 284 p.

- Kokunina L. KH. Osnovy aerodinamiki. [Basics of aerodynamics]. M.: Transport, 1982. 197 p.
- Puri M., Ralescu D. Fuzzy random variables. J. Math. Anal. Appl. 64. 1978. pp. 409-422.
- Pogosyan M. A., Liseytsev N. K. Proyektirovaniye samoletov [Aircraft design]. Moskva: Innovatsionnoye mashinostroyeniye, 2018. 863 p.
- 10.Pchela I. V. Vozdushnye suda. [Aircrafts]. Moskva: Aviateka, 2015. 320 p.