

О механизме формирования гексагонального феррита BaFe_{12-x}Al_xO₁₉

В.Г. Костишин¹, В.В. Коровушкин¹, Д.Н. Читанов¹, А.Г. Налогин², *Н.Д. Урсуляк*²

¹Национальный исследовательский технологический университет «МИСиС», 119049, г. Москва, Ленинский проспект, 4 ²АО «НПП «Исток» им. Шокина, 141190, г. Фрязино, Московская обл., ул. Вокзальная, 2a

Аннотация: В работе рассмотрен механизм формирования поликристаллического гексагонального феррита бария. Рассмотрено влияние легирующих добавок на расположение ионов Fe^{3+} в гексагональном блоке R и на границе гексагонального и шпинельного блоков (RS). Показано, что именно наличие слабомагнитных или диамагнитных ионов легирующих добавок в этих позициях обеспечивает специфические свойства гексагональных ферритов и их практическое использование.

Ключевые слова: гексаферрит бария, легирующая добавка, магнитные свойства, механизм формирования, анизотропия, поликристалл, намагниченность, мессбауэровская спектроскопия, коэрцитивная сила, температура Кюри.

Введение

Многоподрешёточные гексагональные ферриты представляют удобный объект для исследования различного рода эффектов связанных с их сендвичевой структурой [1, 2]. Структура широко используемых в технике замещенных $BaFe_{12}O_{19}$ изоморфна минералу магнитоплюмбита $MeFe_{12}O_{19}$ (Me^{2+} - Ba^{2+} , Sr^{2+} , $Pb^{2+}Ca^{2+}$) и представляет совокупность кислородных слоев двух типов: шпинельного (S) и гексагонального (R), содержащего ионы Me^{2+} [3, 4].

Более того, в таких ферритах в силу значительной анизотропии их свойств можно проследить за процессами упорядочения катионов и дефектов и связанных с ними изменениями магнитных параметров. Дело в том, что упорядочение как катионов, так и дефектов скажется на параметрах суперобменных взаимодействий, особую роль в которых играют ионы Fe^{3+} расположенные в тригональной бипирамиде. Такие ионы наиболее сильно связаны с ионами Fe^{3+} расположенными в гексагональном блоке R и на границе гексагонального и шпинельного блоков (RS) [5, 6]. Именно наличие

слабомагнитных или диамагнитных ионов легирующих добавок в этих позициях обеспечивает специфические свойства гексагональных ферритов и их практическое использование [7].

Объекты и методики экспериментальных исследований

Объектами для исследования служили образцы поликристаллического гексаферрита BaFe₁₂O₁₉ (BaM), а также в виде фольги d=0,1 мм и порошка поликристаллического гексаферрита бария замещенного алюминием. Были изучены их магнитные свойства и локальные характеристики. Образцы изготовлены известной керамической технологии. Для ПО изучения особенностей кристаллической структуры использовали мёссбауэровскую спектроскопию. Магнитные параметры: намагниченность насыщения σ_s , коэрцитивную силу H_{c.} остаточную намагниченность σ_r, температуру Кюри, форму петли гистерезиса измеряли ПО стандартной методике. Мёсбауэровские исследования выполнены на спектрометре Ms1104-Em с обработкой автоматической спектров по программе Univem Ms. Мёссбауэровские спектры получали при комнатной температуре (300К) и (87К) на температуре жидкого азота порошках, а также фольге. Рентгеновские дифрактограммы снимались на аппарате ДРОН-3М в излучении CuK_α. Параметры элементарной ячейки *а* и *с* определяли путем полнопрофильного анализа по Ритвельду (программа FullProf).

Результаты исследований и обсуждение

Результаты рентгенографического анализа (см. рис. 1-3) свидетельствуют о наличии в исследованных материалах неосновных фаз.

Рис. 1. – Штрих-рентгенограмма BaO·5,6Fe₂O₃ при T ϕ = 1100 °C

Рис. 2. – Штрих-рентгенограмма BaO·5,6Fe₂O₃ при T ϕ = 1150 °C

Рис. 3. – Штрих-рентгенограмма BaO·5,6Fe₂O₃ при T ϕ = 1200 °C

Для температуры ферритизации 1100 °C была надежно идентифицирована как неосновная фаза $BaFe_2O_4$, имеющая структуру шпинели, для T ϕ = 1150 °C на дифрактограмме присутствовали дополнительные пики от фазы $Ba_2Fe_6O_{11}$, имеющей орторомбическую структуру.

Фаза Ва₂Fe₆O₁₁ при получении гексаферрита бария устойчиво существует до температуры 1150 °С. Выше этой температуры протекает перитектоидная реакция: Ва₂Fe₆O₁₁→ BaFe₂O₄+ BaFe₁₂O₁₉.

Фаза $Ba_2Fe_6O_{11}$ обладает достаточно высокой устойчивостью: ее присутствие в составе феррита наблюдалось как после закалки образцов от температуры ферритизации, так и после охлаждения их с печью.

Фаза BaFe₂O₄ почти всегда сопутствует получению анизотропного гексаферрита бария. Известно, что состав, отвечающий оптимальному комплексу электромагнитных параметров, смещен относительно стехиометрического соотношения BaO·6Fe₂O₃ в область повышенного содержания BaO. Величина избытка BaO зависит от дисперсности α -Fe₂O₃ [8, 9].

Фаза ВаFe₂O₄ частично растворяется в гексаферрите, частично локализуется по границам его зерен, препятствуя их росту. Различие в температурных интервалах растворения неосновных фаз приводит к отличиям в развитии процессов рекристаллизации, ответственных за формирование микроструктуры ферритов.

Методом высокотемпературной рентгенографии установлено, что ВаFe₁₂O₁₉ образуется в две стадии:

при t = 700–900 °C BaCO₃+6 Fe₂O₃→ BaFe₂O₄+5 Fe₂O₃+CO₂↑

при t = 900–1200 °C BaFe₂O₄+5 Fe₂O₃= BaFe₁₂O₁₉

При этом при протекании второй стадии возможно образование других промежуточных фаз [10]. Неосновные промежуточные фазы могут возникать

по разным причинам: из-за негомогенности смеси исходных компонентов, которая определяется как условиями смешения, так и дисперсностью частиц исходных компонентов; из-за колебаний парциального давления кислорода.

Появление неосновных соединений на начальном этапе синтеза $BaFe_{12}O_{19}$ можно объяснить следующим образом. В начальный момент твердофазного синтеза на поверхности α -Fe₂O₃ формируется прослойка $BaFe_{12}O_{19}$, наследующая дефектность ее поверхностного слоя. В зависимости от сочетания типа дефектов на локальном участке поверхности оболочки там может наблюдаться аномальное отклонение от среднего соотношения подвижности ионов Ba^{2+} и O^{2-} , что и приводит к формированию фаз иной, чем гексаферрит, стехиометрии.

Различие фазового состава исследованных образцов гексаферрита бария сказывается на динамике измельчения ферритизованного порошка.

На рисунке 4 представлены данные о динамике измельчения смесей, ферритизованных при разных температурах.

Рис. 4. – Изменение удельной поверхности ферритизованной шихты гексаферрита бария, обожженной при разных температурах: a) Тф = 1100 °C; б) Тф = 1150 °C; в) Тф = 1200 °C

Из этих данных следует, что неосновная фаза $Ba_2Fe_6O_{11}$ способствует равномерному разрушению ферритизованного материала, в то время как ее распад приводит к охрупчиванию ферритизованной массы. Порошок, полученный из ферритизованной при 1150 °C смеси, обладает более узким гранулометрическим составом (см. рисунок 5), чем после обжига при других температурах, что объясняет высокую однородность микроструктуры спеченных на его основе ферритов.

Рис. 5. – Гранулометрический состав порошков $BaFe_{12}O_{19}$: a) T $\phi = 1100$ °C; б) T $\phi = 1150$ °C; в) T $\phi = 1200$ °C

После ферритизации в исследованном интервале температур размеры частиц ферритизованных продуктов составляют 2-4 мкм, после измельчения

примерно 1 мкм. Добиваться дальнейшего уменьшения размеров частиц для получения нанопорошков путем измельчения гексаферритов затруднительно из-за высокой энергоемкости разрушения частиц.

Механизм формирования аналогичен и для поликристаллического гексаферрита бария замещенного алюминием. По данным рентгеноструктурного анализа образцы поликристаллических гексаферритов бария не содержали сторонних фаз.

Влияние легирующих добавок на их распределение в структуре и магнитные свойства гексагональных бариевых ферритов было прослежено на образцах гексаферритов BaFe_{12-x}Al_xO₁₉. На рисунке 6 приведены их мёссбауэровские спектры, снятые при 300 и 87 К.

В отличие от незамещенных гексаферритов BaFe₁₂O₁₉ спектры образцов изоморфным с алюминием оказалось невозможным не только удовлетворительно разложить на 5 секстетов, но и выполнить соотношения интенсивностей $3_{1-6}:2_{2-5}:1_{3-4},$ интегральных ПИКОВ характерное ДЛЯ поликристаллов. Так наиболее приемлемое разложение для образца в виде фольги было выполнено при задании 7 секстетов при соотношении интенсивностей 3:1,39:1,13. Такое соотношение свойственно для образцов с определенной степенью текстуры.

Сопоставляя полученные площади секстетов в $BaFe_{12-x}Al_xO_{19}$ с теоретическими, можно сказать, что основные замещения Al - Fe происходят в подрешетках *a*, и *b* причем подрешетки *a* и *c* разделяются на две, в результате чего в спектре выделяются 7 секстетов. Если в подрешетке *a* теоретически должно быть 50 % отн., приходящиеся на 6 ионов, то в феррите $BaFe_{12-x}Al_xO_{19}$ на ионы железа подрешеток *a* приходится 32,5 % отн., а на ионы железа подрешетки b 5,4 % отн.

Исходя из заселенностей а- и b-подрешеток, кристаллохимическая формула для порошка BaFe_{12-x}Al_xO₁₉ будет иметь вид BaFe_{9,55}Al_{2,45}O₁₉.

Рис. 6. – Мессбауэровские спектры BaFe_{12-x} Al_xO₁₉: *a* – фольга (300 K); *б* – фольга (87 K); *в* – порошок (300 K); *г* -порошок (87 K)

Согласно полученному соотношению интегральных интенсивностей в спектре фольги 3:1,39:1,13 (рис. 6а) $A_{1-6}/A_{2-5} = 3(\cos^2\theta)/4(\sin^2\theta)$, находим угол

отклонения магнитных моментов от волнового вектора γ-излучения Θ, равный 44,6 °. Исходя из полученных результатов, можно констатировать, что в гексагональных ферритах Ва в виде фольги наглядно проявляется текстура.

Мёссбауэровский спектр фольги снятый при 87 К (рис. 66) показал худшее разрешение пиков от ионов Fe^{3+} различных подрешеток, чем при 300 К, что объясняется разнонаправленностью спинов ионов Fe^{3+} структурных подрешеток. Угол Θ при этом почти не изменился и составил 44,2 °.

Мёссбауэровский спектр порошка, показал отсутствие текстуры, поскольку показал соотношение интенсивностей 3:2,11:1,18 и угол Θ равный 53,9 °. Основные замещения также как и в образце из фольги происходят в подрешетке *а*.

Магнитные измерения гексаферрита BaFe_{9,55}Al_{2,45}O₁₉ показали следующие характеристики: намагниченность насыщения $\sigma_s = 21,68 \text{ Am}^2/\text{kg}$; остаточная намагниченость $\sigma_r = 12,13 \text{ Am}^2/\text{kg}$; Коэрцитивная сила H_c =532,3 kA/m; Отношение магнитных моментов M_r/M_s =0,56; температура Кюри Tc = 270 °C. По сравнению с незамещенным гексаферритом Ba, все магнитные характеристики существенно уменьшаются.

Заключение

Рассмотрен механизм формирования поликристаллического гексагонального феррита бария. Рассмотрено влияние легирующих добавок на расположение ионов Fe³⁺ в гексагональном блоке R и на границе гексагонального и шпинельного блоков (RS).

Установлено, что основные замещения Al – Fe происходят в подрешетках *a*, и *b* причем подрешетки *a* и *c* разделяются на две. Если в подрешетке *a* теоретически должно быть 50 % отн., приходящиеся на 6

ионов, то в феррите $BaFe_{12-x}Al_xO_{19}$ на ионы железа подрешеток *а* приходится 32,5 % отн., а на ионы железа подрешетки b 5,4 % отн.

Показано, что именно наличие слабомагнитных или диамагнитных ионов легирующих добавок в этих позициях обеспечивает изменение свойств гексагональных ферритов.

Работа выполнена в НИТУ «МИСиС» при финансовой поддержке Гранта президента № МК-5562.2015.8 от 16.02.2015 г.

Литература

1. Хачатурян А.Г. Теоретические исследования энергии взаимодействия атомов внедрения, связанной с упругими искажениями кристаллической решетки // ФТТ. 1967. т. 10. С. 2861-2869.

2. Петров А.П., Куневич А.В. Обменные взаимодействия и спиновая неколлинеарность в гексагональных ферритах // ЖЭТФ. 1972. т. 63. № 6. С. 2239-2247.

3. Башкиров Ш.Ш., Либерман А.Б., Синявский В.И. Магнитная микроструктура ферритов. Изв. Казань: Казанский университет, 1978. 180 с.

4. Kojima, H., 1982. Fundamental properties of hexagonal ferrites with magnetoplumbite structure. Ferromagnetic Materials, pp. 305-440.

5. Андреев В.Г., Костишин В.Г., Читанов Д.Н., Николаев А.Н., Комлев А.С., Адамцов А.Ю. Влияние базового химического состава на свойства Ni-Zn-ферритов, полученных методом радиационно-термического спекания // Инженерный вестник Дона. 2013. №3. URL: ivdon.ru/ru/magazine/archive/n3y2013/1873.

6. Вергазов Р.М., Костишин В.Г., Андреев В.Г., Морченко А.Т., Комлев А.С., Николаев А.Н. Влияние легирующих добавок на свойства радиопоглощающих Mg-Zn-ферритов, полученных методом радиационнотермического спекания // Инженерный вестник Дона. 2013. №3. URL: ivdon.ru/ru/magazine/archive/n3y2013/1874.

7. Stablin, H., 1982. Hard ferrites and plastoferrites. Ferromagnetic Materials, pp. 441-568.

8. Batti, P., 1976. Diagrammi di stato stracture e comportamento magnetico del ferriti esagonali. Ceramurqia, 6(1): pp.11-16.

9. Reed, J.S. and R.M. Fulrath, 1973. Characterization and Sintering behavior of Ba- and Sr-ferrites. J. Amer. Ceram. Soc., 4(56):pp. 207-210.

10. Haberey, F. and A. Kockel, 1976. The formation of strontium hexaferrite $SrFe_{12}O_{19}$ from pure iron oxide and strontium carbonate. JEEE Transaction on Magnetics, 6(12): pp.983-985.

References

1. Hachaturjan A.G. FTT (Rus). 1967, № 10. pp. 2861-2869.

2. Petrov A.P., Kunevich A.V. ZhJeTF (Rus). 1972, 63. № 6. pp. 2239-2247.

3. Bashkirov Sh.Sh., Liberman A.B., Sinjavskij V.I. Magnitnaja mikrostruktura ferritov [The magnetic ferrite microstructure]. Izv. Kazan': Kazanskij universitet, 1978. 180 p.

4. Kojima, H., 1982. Ferromagnetic Materials, 3: pp.305-440.

5. Andreev V.G., Kostishin V.G., Chitanov D.N., Nikolaev A.N., Komlev A.S., Adamcov A.Ju. Inzhenernyj vestnik Dona (Rus). 2013, №3. URL: ivdon.ru/ru/magazine/archive/n3y2013/1873.

6. Vergazov R.M., Kostishin V.G., Andreev V.G., Morchenko A.T., Komlev A.S., Nikolaev A.N. Inzhenernyj vestnik Dona (Rus). 2013, №3. URL: ivdon.ru/ru/magazine/archive/n3y2013/1874.

7. Stablin, H., 1982. Ferromagnetic Materials, 3: pp. 441-568.

8. Batti, P., 1976. Ceramurqia, 6(1): pp.11-16.

9. Reed, J.S. and R.M. Fulrath, 1973. J. Amer. Ceram. Soc., 4(56):pp. 207-210.

10. Haberey, F. and A. Kockel, 1976. JEEE Transaction on Magnetics, 6(12): pp.983-985.