Повышение точности калибровки внешних параметров видеокамеры Д.С. Толкачев

Во многих задачах компьютерного зрения, например при построении систем стереовидения [1], систем видеорегистрирования, а также при визуализации моделируемых объектов на изображении [2], возникает необходимость оценки положения видеокамеры в пространстве по полученным ею изображениям известного калибровочного объекта. Стремительное развитие фото - и видеорегистрирующей аппаратуры повышает требования к точности определения калибровочных параметров и вызывает необходимость произвести исследование влияния выбора параметров калибровочного объекта на точность калибровки.

Связь между координатами точки в мировой системе координат (СК) $\mathbf{x} = (x, y, z)$ и ее проекции на изображение $\mathbf{p} = (u, v)$ описывается с помощью выражения

$\widetilde{\mathbf{p}} = \mathbf{K} \big[\mathbf{R} \,|\, \mathbf{t} \big] \mathbf{x} \,,$

где **К** – матрица *внутренних параметров* камеры, позволяющая перейти от координат точки в СК камеры к координатам проекции этой точки на изображении; $[\mathbf{R} \mid \mathbf{t}] - внешние параметры$ камеры, определяющие переход из мировой СК к СК камеры, $\mathbf{\tilde{p}} = (\lambda u, \lambda v, \lambda)$ – однородные координаты точки на изображении.

Внутренние параметры уникальны для каждой камеры и не зависят от других камер и положения в пространстве. Их можно определить индивидуально для каждой камеры с помощью геометрической калибровки по методике, описанной в [3, 4]. При отсутствии геометрических искажений внутренние параметры камеры записываются в виде *матрицы камеры*:

$$\mathbf{K} = \begin{bmatrix} f_{x} & 0 & p_{x} \\ 0 & f_{y} & p_{y} \\ 0 & 0 & 1 \end{bmatrix},$$

где f_x, f_y – фокусные расстояния камеры, p_x, p_y – координаты точки пересечения оп-

тической оси и плоскости изображения в системе координат изображения.

Внешние параметры камеры имеют вид

$$[\mathbf{R} | \mathbf{t}] = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix},$$

где $\mathbf{R} = [r_{ij}] - матрица поворота размера 3 × 3, задающая ориентацию камеры и имеющая три степени свободы; <math>\mathbf{t} = (t_x, t_y, t_z) - вектор переноса,$ совмещающий начала мировой СК и СК камеры.

Для определения внешних параметров камеры после калибровки внутренних параметров достаточно иметь набор как минимум из четырех соответствий между координатами точек в пространстве $\mathbf{x}_i = (x_i, y_i, z_i)$ и координатами точек на изображении $\mathbf{p}_i = (u_i, v_i)$. Такая задача популярна в области компьютерного зрения и может решаться различными методами, в основном отличающимися вычислительной сложностью [5–7].

В библиотеке OpenCV также имеется реализация такой функции с именем cv::solvePnP или cvFindExtrinsicCameraParams2 в случае старого интерфейса [8, с. 395]. В качестве входных параметров в эту функцию поступают: массив трехмерных точек пространства, соответствующий этим точкам массив двумерных точек на изображении, внутренние параметры камеры (матрица камеры и коэффициенты дисторсии). Выходными параметры этой функции являются вектор переноса $\mathbf{t} = (t_x, t_y, t_z)$ и *вектор вращения* $\mathbf{w} = (w_x, w_y, w_z)$. Вектор вращения является описанием поворота в пространстве на угол $\theta = ||\mathbf{w}||$ вокруг единичного вектора $\mathbf{u} = \mathbf{w} / \theta$. Матрица вращения может быть получена из \mathbf{u} и θ с помощью формулы Родрига [9, с. 38]:

 $\mathbf{R}(\mathbf{u}, \theta) = \mathbf{I} + \sin \theta \ [\mathbf{u}]_{\times} + (1 - \cos \theta) \ [\mathbf{u}]_{\times}^{2},$

где **I** – единичная матрица 3×3 , а $[\mathbf{u}]_{\times}$ – кососимметричная матрица, используемая для обозначения векторного произведения:

$$[\mathbf{u}]_{\times} = \begin{bmatrix} 0 & -u_{z} & u_{y} \\ u_{z} & 0 & -u_{x} \\ -u_{y} & u_{x} & 0 \end{bmatrix}.$$

На практике вместо вектора переноса **t** удобно оперировать *положением камеры* **c** = (c_x , c_y , c_z), которое при известных **R** и **t** находится по следующей формуле (обратная матрица поворота получается транспонированием матрицы прямого поворота **R**⁻¹ = **R**^T):

$$\mathbf{c} = -\mathbf{R}^{\mathrm{T}} \mathbf{t}.$$

Ориентацию камеры удобно задавать в виде последовательности элементарных вращений $\mathbf{r} = (\lambda, \phi, \theta)$ на углы азимута, высоты и крена соответственно, которые для известной матрицы поворота $\mathbf{R} = [r_{ij}]$ можно найти по следующим формулам [10]:

$$\lambda = \arctan 2(r_{31}, r_{32})$$

$$\varphi = \arcsin(r_{33}),$$

 $\theta = \arctan 2(-r_{13}, -r_{23}),$

где arctan2(*x*, *y*) – двухаргументная функция арктангенса, эквивалентная функции arctan(y / x) с учетом четверти, в которой находится точка (*x*, *y*), принимающая значения в интервале ($-\pi$, π].

При помощи моделирования выполнено исследование того, как влияет выбор и погрешность измерения пространственных координат **x** и соответствующих двумерных координат **p** на точность оценки положения камеры. Моделировалась камера с углом обзора по горизонтали $\alpha = 68^{\circ}$ и разрешением изображения w × h = 704 × 576 пикселей. Внутренние параметры камеры, таким образом, были приняты следующими:

$$f_x = f_y = w / (2 \tan(\alpha/2)) \approx 521,9;$$

$$p_x = (w - 1) / 2 = 351,5;$$

 $p_y = (h - 1) / 2 = 288,5;$

Внешние параметры камеры задавались следующим образом: камера распо-

лагалась в начале координат $\mathbf{c}_0 = (0, 0, 0)$, а углы ее ориентации были приняты нулевыми $\mathbf{c}_0 = (0, 0, 0)$ (направление оси **Z** СК камеры совпадает с направлением оси **Y** мировой СК):

 $[\mathbf{R} \mid \mathbf{t}] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$

Точки в мировой СК определяются выбором калибровочного объекта. Исследовалось несколько конфигураций точек **x**_i калибровочного объекта с различными расстояниями от камеры и различными угловыми размерами (таблица 1):

1. Конфигурация из четырех точек, проекции которых разнесены друг от друга и расположены в угловых областях изображения.

2. Конфигурация из четырех точек, проекции которых не сильно разнесены друг от друга.

3. Конфигурация из восьми точек, полученная объединением 1-й и 2-й конфигурации.

4. Конфигурация из четырех точек, расположенных дальше от камеры, чем во второй конфигурации, проекции которых также расположены по углам изображения.

5. Конфигурация из четырех точек, составленная из 1-й и 4-й конфигураций (из каждой взято по две точки).

Таблица №1

Х, М			р , пикс.		Х, М			р , пикс.	
Конфигурация № 1					Конфигурация № 2				
Конфигурация № 3									
-1	2	1	90,6	26,6	-0,5	2	0,5	221,0	157,0
1	2	1	612,4	26,6	0,5	2	0,5	482,0	157,0
-1	2	-1	90,6	548,4	-0,5	2	-0,5	221,0	418,0
1	2	-1	612,4	548,4	0,5	2	-0,5	482,0	418,0
Конфигурация № 4					Конфигурация № 5				
-2	4	2	90,6	26,6	-2	4	2	90,6	26,6

Конфигурации точек и их проекции

2	4	2	612,4	26,6	2	4	2	612,4	26,6
-2	4	-2	90,6	548,4	-1	2	-1	90,6	548,4
2	4	-2	612,4	548,4	1	2	-1	612,4	548,4

Моделировалась погрешность оценки пространственных координат $\pm e_x = 1, 5$ и 10 мм и погрешность определения координат на изображении $\pm e_p = 1$ пиксель. Для этого к каждой пространственной координате **x** добавлялась случайная ошибка ξ с нормальным законом распределения и среднеквадратичным отклонением σ_x $= e_x/2$, что соответствует доверительному интервалу 95% для заданного e_x . Затем полученные зашумленные координаты $\mathbf{x}_{\xi} = \mathbf{x} + \xi(\sigma_x)$ проецировались на изображение, и к найденным проекциям добавлялся гауссов шум с среднеквадратичным отклонением $\sigma_p = e_p/2$:

$$\widetilde{\mathbf{p}}_{\xi} = \mathbf{K} \big[\mathbf{R} \,|\, \mathbf{t} \big] \mathbf{x}_{\xi} + \xi(\sigma_p) \,.$$

Для полученных таким образом соответствий $\tilde{\mathbf{p}}_{\xi}$ и **x** с помощью функции solvePnP библиотеки OpenCV определялись внешние параметры камеры, а затем находились положение \mathbf{c}_i и ориентация \mathbf{r}_i камеры, где i = 0, 1, ..., N, N = 1000 - число, достаточное для статистически достоверной оценки погрешности.

Ошибка определения положения камеры для 95-процентного доверительного интервала находилась как два среднеквадратичных отклонения \mathbf{x}_i от \mathbf{x}_0 :

$$\Delta \mathbf{c} = (\Delta_x, \Delta_y, \Delta_z) = 2\sqrt{\frac{1}{N-1}\sum_{i=1}^N (\mathbf{x}_i - \mathbf{x}_0)^2},$$

аналогично определялась ошибка определения ориентации $\Delta \mathbf{r} = (\Delta_{\lambda}, \Delta_{\varphi}, \Delta_{\theta})$. Рассчитанные таким образом погрешности приведены в таблице 2.

Таблица № 2

Значения ошибки определения положения $\Delta \mathbf{x}$ и ориентации $\Delta \mathbf{r}$ камеры в зависимости от ошибки измерения пространственных координат e_x для различных конфигураций.

e_x , MM	$\Delta \mathbf{x}$, mm	$\Delta \mathbf{r}$					
Конфигурация № 1							

1	5,6	5,6	1,6	0,13°	0,13°	0,04°			
5	14,6	14,4	4,5	0,34°	0,33°	0,11°			
10	26,9	27,9	8,8	0,62°	0,65°	0,21°			
	Конфигурация № 2								
1	18,8	18,3	3,1	0,50°	0,49°	0,09°			
5	47,8	45,2	8,2	1,28°	1,22°	0,21°			
10	91,6	88,6	15,3	2,48°	2,40°	0,43°			
	Конфигурация № 3								
1	4,4	4,5	1,5	0,11°	0,11°	0,04°			
5	12,0	12,0	4,0	0,30°	0,30°	0,10°			
10	23,8	23,1	7,8	0,59°	0,58°	0,18°			
Конфигурация № 4									
1	10,3	10,2	2,8	0,12°	0,12°	0,04°			
5	16,5	16,0	5,3	0,19°	0,18°	0,06°			
10	29,2	28,1	9,5	0,34°	0,33°	0,11°			
Конфигурация № 5									
1	4,4	4,1	2,3	0,08°	0,07°	0,05°			
5	9,2	10,4	6,1	0,14°	0,16°	0,09°			
10	16,8	19,4	11,9	0,26°	0,29°	0,17°			

По результатам моделирования можно сделать следующие рекомендации:

1. Для уменьшения погрешностей необходимо увеличивать угловое расстояние между проекциями точек (конфигурации №1 и №2)

2. Добавление дополнительных точек позволяет уменьшить погрешность (конфигурации №1 и №3)

3. Отдаление точек в пространстве без изменения их угловых расстояний уменьшает погрешность определения ориентации камеры, но увеличивает погрешность определения положения камеры (конфигурации №1 и №4)

4. Предпочтительно располагать точки в пространстве так, чтобы они имели различные дальностные координаты. В этом случае погрешности распределяются более равномерно для различных координат или осей поворота, и их суммарное значение в этом случае наименьшее (конфигурации №1 и №5).

5. Предполагается достаточно точным определение положения и ориентации камер с точностью измерения пространственных координат 10 мм, для конфигу-

рации из четырех разноудаленных от камеры точек (конфигурация №5).

Литература:

1. Лахов, А.Я. Программное обеспечение для стереовизуализации результатов конечно-элементного моделирования [Электронный ресурс] // «Инженерный вестник Дона», 2013, №1. – Режим доступа: <u>http://ivdon.ru/magazine/archive/n1y2013/1501</u> (доступ свободный) – Загл. с экрана. – Яз. рус.

2. Рачковская Г.С. Математическое моделирование и компьютерная визуализации сложных геометрических форм // «Инженерный вестник Дона», 2013, №1. – Режим доступа: <u>http://ivdon.ru/magazine/archive/n1y2013/1498</u> (доступ свободный) – Загл. с экрана. – Яз. рус.

3. Sturm Peter F, Maybank Stephen J. On plane-based camera calibration: A general algorithm, singularities, applications // Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on. / IEEE. –Vol. 1. – 1999.

4. Zhang Zh. A Flexible New Technique for Camera Calibration // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 2000. – Vol. 22(11). – P. 1330– 1334.

5. Complete Solution Classification for the Perspective-Three-Point Problem / XiaoShan Gao, Xiao-Rong Hou, Jianliang Tang, Hang-Fei Cheng // IEEE Transactionson Pattern Analysis and Machine Intelligence. – 2003. – Vol. 25, no. 8. – P. 930–943.

6. Moreno-Noguer F., Lepetit V., Fua P. Accurate Non-Iterative O(n) Solution to the PnP Problem // Computer Vision, 2007. ICCV 2007. IEEE 11^{th} International Conference on. – 2007. – P. 1–8.

7. Schweighofer Gerald, Pinz Axel. Globally Optimal O(n) Solution to the PnP-Problem for General Camera Models. // BMVC. – 2008. – P. 1–10.

8. Bradski Gary, Kaehler Adrian. Learning OpenCV. – Sebastopol: O'Reilly, 2008. – 555 p.

9. Szeliski R. Computer Vision. Algorithms and Applications / Ed. by D. Gries, F.
B. Schneider. – Springer, 2011. – 812 p.

10. Толкачев Д.С. Преобразования координат, связанные с вращением камеры, при формировании панорамы. – Материалы Всероссийской научной конференции «Инновационные процессе в гуманитарных, естественных и технических системах» – часть 3 – Таганрог: Изд-во ТТИ ЮФУ, 2012 г, с. 68–72.