×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

Numerical simulation to test the wind shear detection mode in radar signal simulators for airborne radars

Abstract

Numerical simulation to test the wind shear detection mode in radar signal simulators for airborne radars

Ryzhikov M.B., Novikova Yu.A., Tereshchenko G.V.,

Incoming article date: 23.10.2024

To check the efficiency and correctness of the implementation of primary and secondary signal processing algorithms in onboard radar systems for Arctic purposes in the functional tasks of detecting weather conditions that are potentially hazardous to flight, it is advisable to use numerical modeling of radar signal simulators. This is due to the fact that during preliminary tests under adverse weather conditions there is a potential danger of losing control over the flight of the radar carrier, especially in the case of developing unmanned aircraft platforms. In addition, there are very rare weather phenomena, such as wind shear, the detection of which during tests is an unlikely event. All this leads to the fact that the development and debugging of onboard radars for low-altitude carriers that solve the problem of meteorological navigation during flight, it is advisable to carry out the method of semi-naturalistic modeling, using databases for the formation of reflected signals that contain a set of initial parameters that allow imitation either in real time or according to a pre-planned flight scenario and a prepared special set of signal signature records. This article proposes an algorithm for working with a database and subsequent numerical modeling, which allows estimating the necessary spectral components of signal signatures for a pulse-Doppler radar that estimates the radial component of wind speed in each resolution element, which is used for further calculation of the F-factor of wind shear hazard.

Keywords: airborne radar, database, simulation, numerical modeling, meteorological navigation, Arctic, wind shear