×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

Computer simulation of a heat exchanger to improve the energy efficiency of industrial processes

Abstract

Computer simulation of a heat exchanger to improve the energy efficiency of industrial processes

Tishakov A.A.

Incoming article date: 06.11.2024

The work is devoted to the study of the temperature distribution and equivalent voltage on the surface of a thermal radiation receiver during experimental and computational series. The experiments showed a qualitative and quantitative coincidence of the temperature data obtained by thermal imaging with the results of numerical modeling. The average error was 0.5℃, with a maximum deviation of 1.5℃ at individual points, which is due to edge effects and thermal insulation features. The computational model reproduces the main characteristics of the temperature field, including the effect of shielding, using a relatively low density of the computational grid. As part of the verification of the numerical model, the analysis of grid convergence was carried out, as well as the control of residuals and control of solution parameters were performed.

Keywords: heat exchanger, numerical and analytical calculation, convective and radiant heat transfer, efficiency improvement, outgoing flue gas, heat recovery, gas-liquid heat exchanger, numerical modeling, mathematical model, ANSYS Workbench software