Strength of concrete under dynamic loading under uniaxial and biaxial compression conditions
Abstract
Strength of concrete under dynamic loading under uniaxial and biaxial compression conditions
Incoming article date: 14.11.2024The paper presents the methodology and results of experimental studies of concrete strength under uniaxial and biaxial compression under dynamic impact. The research results are presented in the form of illustrative tables and graphs. The effect of loading rate and the second principal stress on concrete strength is assessed. Ways for further research development are proposed. The studies have shown that under both static and dynamic loading, the type of stress state and the stress level σ2 significantly affect the strength of concrete. The most noticeable increase in strength occurs during the transition from uniaxial compression to biaxial, even with a small value of the second principal stress σ2. With an increase in the level of lateral compression from 0.2Rb to 0.6Rb, the strength of concrete also increases. Thus, the increase in strength at σ2 = 0.6Rb both under statics and dynamics is more than 40% compared to the strength in uniaxial tests with the corresponding loading rate. The type of stress state and the level of lateral compression affect the dynamic hardening coefficient, but to a lesser extent than the loading rate. A slight increase in k_(b,v) (σ_2) compared to kb,v was observed under biaxial compression with a lateral compression level of 0.4Rb and 0.6Rb.
Keywords: concrete, strength, strength criterion, experimental study, uniaxial compression, biaxial compression, dynamic loading, dynamic hardening coefficient