The article considers a variant of constructing a model of a solar battery orientation drive based on a DC motor and PID control. Orientation in space is performed along two axes: azimuth and zenith. The model is used for optimal adjustment of PID controller parameters when processing the required orientation angles under gusty wind conditions. The following are used as the main adjustment criteria: small overshoot when processing the angle, aperiodic (non-oscillatory) nature of transient processes, minimum dynamic error in compensating for wind effects when processing the angle, minimum settling time when processing the effect. The controller was optimized using the coordinate descent method. A variant of controller adjustment for the optimal mode is given with process graphs confirming its practical optimality. The constructed drive model can be used to implement a digital twin of the solar battery panel orientation drive monitoring and control system.
Keywords: mathematical model of the drive, PID controller, solar panel, gusty wind effects, azimuth and zenith orientation, optimization by complex criterion