The transition from scheduled maintenance and repair of equipment to maintenance based on its actual technical state requires the use of new methods of data analysis based on machine learning. Modern data collection systems such as robotic unmanned complexes allow generating large volumes of graphic data in various spectra. The increase in data volume leads to the task of automating their processing and analysis to identify defects in high-voltage equipment. This article analyzes the features of using computer vision algorithms for images of high-voltage equipment of power plants and substations in the infrared spectrum and presents a method for their analysis, which can be used to create intelligent decision support systems in the field of technical diagnostics of equipment. The proposed method uses both deterministic algorithms and machine learning. Classical computer vision algorithms are applied for preliminary data processing in order to highlight significant features, and models based on unsupervised machine learning are applied to recognize graphic images of equipment in a feature space optimized for information space. Image segmentation using a spatial clustering algorithm based on the density distribution of values taking into account outliers allows detecting and grouping image fragments with statistically close distributions of line orientations. Such fragments characterize certain structural elements of the equipment. The article describes an algorithm that implements the proposed method using the example of solving the problem of detecting defects in current transformers, and presents a visualization of its intermediate steps.
Keywords: diversification of management, production diversification, financial and economic purposes of a diversification, technological purposes of ensuring flexibility of production