×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • Numerical Evaluation of Laws of Attenuation and Interference Structure of Pressure and Particle Velocity Fields in Sea Shelf Waveguides

    The article is devoted to the analysis of the spatial structure of acoustic pressure and particle velocity fields in hydroacoustic waveguides of the sea shelf. Waveguides with two types of sound velocity profile are considered: constant and having an underwater sound channel. The bottom is assumed to be a transitional layer with a sound velocity gradient and a half-space. The acoustic properties of the layer are assumed to be those of silt or sand. The interference structure of the pressure field and the field of the vertical component of the particle velocity is analyzed. The spatial laws of attenuation pressure and particle velocity fields are analyzed. It is shown that the interference structure and the laws of decrease of the pressure field and the vertical component of the particle velocity do not coincide. The article is devoted to the analysis of the spatial structure of acoustic pressure and particle velocity fields in hydroacoustic waveguides of the sea shelf. Waveguides with two types of sound velocity profile are considered: constant and having an underwater sound channel. The bottom is assumed to be a transitional layer with a sound velocity gradient and a half-space. The acoustic properties of the layer are assumed to be those of silt or sand. The interference structure of the pressure field and the field of the vertical component of the particle velocity is analyzed. The spatial laws of attenuation pressure and particle velocity fields are analyzed. It is shown that the interference structure and the laws of decrease of the pressure field and the vertical component of the particle velocity do not coincide.

    Keywords: normal modes, particle velocity, seabed, interference structure, incoherent addition