×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • The influence of modern development on the ecology of megacities

    The presence of a large number of undeveloped areas within the city - now inactive enterprises - creates a negative impact on the urban environment. Since these territories are depressed spaces, the design of new residential areas with characteristic high-rise buildings seems to be a logical path for the development of the city. However, uncontrolled urbanization and dense multi-storey buildings represent a fundamental change in the human environment. The consequences of this approach lead to a deterioration in the air exchange of areas and contributes to the formation of “heat islands” that affect air pollution. This contributes to the deterioration of the environmental and social situation and the emergence of a negative perception of the environment among the population. The worsening of this problem may cause a deterioration in the social climate in large cities. The article analyzes the impact of dense high-rise buildings on the environment located on the territory of non-operating enterprises. Methods for solving this problem are indicated. The results of field observations and studies of the interhouse space are presented, on the basis of which the role of convective flows of thermal origin in the air exchange of urban space is revealed. A comparative analysis of projects for the development of the territory of a former house-building plant with complexes for various functional purposes is presented.

    Keywords: urban area, air exchange, convective flows, temperature conditions, standard buildings, renovation, leisure facilities, depressed spaces

  • Numerical analysis of connections of steel structure elements

    The practical significance associated with the development of automated software systems for calculating joints of steel structures of buildings and structures is noted. Using the IDEA Statica software package as an example, the calculation and analysis of the operation of a steel unit connecting the lower chord of a truss to a column was carried out. The order and sequence of entering the initial data for calculating the connection is shown. The calculation results present in tabular and graphical forms the equivalent stresses and plastic deformations of the main elements, as well as the results of inspections of bolted and welded connections of these elements to each other. A comparative analysis of numerical and analytical calculations was performed. Conclusions are formulated based on the results presented in the article.

    Keywords: calculation model, connections, steel structures, component finite element method, design, nonlinear analysis, work analysis, stress, plastic deformation, bolted connection, welded connection

  • Review of landscape and ecological features of enotourism objects

    The article considers ecological and landscape features on the example of modern realized objects of wine tourism in the South of Russia. Based on the analysis of a number of new winery facilities and publications on this issue, some features in the context of modern architecture and its enotourism component are identified. Conclusions are made about the conformity of these features to the global modern trends in the design of buildings, such as environmental friendliness and resource conservation, respect for the landscape. On the example of the considered objects the hypothesis that the techniques of architect's work with the environment in conjunction with the original architecture increase the tourist attractiveness of wine production in general is confirmed.

    Keywords: architecture, winery, enotourism, agritourism, landscape, project, landscaping, volume and planning solutions

  • Calculation of concrete elements in conditions of uneven all-round compression

    The cases of uneven compression of a concrete cylinder in the case of simple loading and comprehensive uneven compression of a spiral-reinforced concrete cylinder under disproportionate loading are considered. The dependences of longitudinal, transverse and volumetric deformations on longitudinal stress are obtained.

    Keywords: longitudinal stress, circumferential stress, longitudinal deformation, circumferential deformation, spiral reinforced concrete strut, shear strain intensity, shear stress intensity

  • Framed steel earthquake-resistant structures traditional design principles

    The main means of seismic protection for increasing the seismic resistance of buildings and structures are described. The main problems associated with the design of special seismic protection equipment are outlined. The basic requirements for the design and calculations of steel frame frames taking into account seismic impact in accordance with the current design standards in the Russian Federation are analyzed. There is an insufficient description of the requirements specified in the standards for performing calculations and design of structures and their connections. Recommendations and instructions are given for taking into account the requirements of the standards for the design of steel frame frames. Schematic diagrams of special units for coupling columns with crossbars, necessary for design in seismically hazardous areas, are presented. Conclusions are formulated.

    Keywords: special units, columns, beams, seismic impact, seismic protection, steel frames, plastic hinges, excess strength factor, forces, plastic moment, design.

  • Towards a method for calculating reinforced concrete flexible eccentrically compressed structures operating with large eccentricity

    This article presents a new developed calculation methodology, which includes provisions for standard calculations and takes into account the peculiarities of the operation of eccentrically compressed reinforced concrete structures operating at large eccentricities of load application. Adjustments have been made to the calculation methodology to take into account the following factors: the standard methodology uses the maximum tensile strength of reinforcement; proposals have been developed to determine the actual resistance of tensile reinforcement, which, in fact, will be significantly lower than the limit. Proposals are given that take into account the limiting deformations of concrete, which, in turn, will be a key quantity for determining the resistance of tensile reinforcement in the cross section. The article also presents the results of experimental studies of a flexible reinforced concrete pillar operating with a load eccentricity equal to e0 = 0.32h. Theoretical calculations and experimental studies were analyzed and appropriate conclusions were drawn.A formula has been developed to determine the real resistance of the stretched metal reinforcement at the time preceding destruction. The calculation algorithm has been compiled. When comparing theoretical and experimental strength, the difference did not exceed 5%.

    Keywords: steel, heavy concrete, reinforced concrete, testing, stand

  • Investigation of reinforcement bonding parameters in concrete for its evaluation during corrosion

    The structural integrity of many reinforced concrete structures can be broken due to corrosion of reinforcing steel. This phenomenon is quite pronounced in infrastructure where de-icing chemicals are widely used. The aim of this study is to examine the bond characteristics between reinforcing steel and surrounding concrete to evaluate its effect in corrosion. The strength of the bond was studied in terms of elongation load response, cracking behavior.It is shown that the friction between concrete and reinforcement along the edge of the rib prevents the concrete key from sliding relative to the rib. The force due to friction between the reinforcement and concrete at the rib is vectorially added to the cohesion component acting perpendicular to the rib. If friction between the concrete and reinforcement is lost, the only component of bond strength is the force acting perpendicular to the rib. In pullout failure, the friction between concrete and reinforcement is less important than in spalling failure.

    Keywords: reinforcement, concrete, bond, slip, sliding, pullout, corrosion, concrete deformation.

  • Calculation of multi-cycle fatigue of frame assemblies

    One of the main causes of structural failure is fatigue, which is caused by failure under repeated cyclic load. The vibration strength of welded joints depends on the height of the weld catheter, equivalent Mises stresses and general movements of frame assemblies of building metal structures experiencing multi-cycle loading reliability of frame assemblies when they are reinforced.

    Keywords: reinforcements, reliability, assemblies, metal structures, multi-cycle fatigue

  • Water resistance of concrete fabric

    Increasing the energy efficiency of the construction process involves the use of materials with the lowest material intensity, including thickness, as well as with a reduced content of Portland cement clinker while maintaining or improving the technical characteristics of the products. In this regard, the use of textile concrete products, including concrete sheets, is promising. The development of a composite binder containing components that reduce nega-tive pressure in hardening concrete, and consequently shrinkage deformations and cracking, made it possible to obtain products with the following waterproofness indicators: determined by the ""wet spot"" method: 1.2 MPa; with a filtration coefficient of 5-7×10-11 cm / s; the concrete waterproof grade W12

    Keywords: textile-concrete, concrete web, water resistance, shrinkage during hardening, cracking, fine concrete

  • The work of reinforced concrete slabs during pressing

    This article discusses the results of studies of the behavior of reinforced concrete slabs during punching. The parameters affecting the shear strength of the joints of columns and slabs are considered. Studies of the influence of the strength of concrete, the location of reinforcement, the reinforcement coefficient, the shape and size of the column are given. Various types of reinforcement of reinforced concrete slabs in the punching zone are presented.

    Keywords: floor slab, column, punching, shear, bending, transverse reinforcement, dowel action

  • Characteristic defects of monolithic structures in violation of the technology of work in winter

    The article provides an overview of the characteristic defects that occur during winter concreting as a result of violations of the technology of concrete work. The relevance of this topic is justified by the large-scale increase in the volume of construction of monolithic buildings for various purposes: residential, public, as well as various types of structures made of monolithic reinforced concrete. A feature of the review of these defects is in this case their main causes, which are associated with violations of concreting technology due to the need in some cases to accelerate production work. The defects presented in this article were identified based on the analysis of accounting documentation when performing visual surveys in the process of scientific and technical support for the construction of buildings of increased responsibility. The violations described in the article were observed at various monolithic construction sites within modern megacities. The article describes the main causes of these defects. The ways of eliminating these defects based on engineering practice are proposed.

    Keywords: inspection of building structures, defects of monolithic structures, scientific and technical support of construction, flaw detection of building structures, concreting in winter

  • Reducing the concentration of fine dust PM2.5 and PM10 in construction by optimizing facilities on the construction site

    In most countries of the world, the construction industry is one of the main sources of air pollution in urban areas and agglomerations. One of the most dangerous pollutants are fine dust particles PM2.5 and PM10, formed from the production of dusty construction processes. Due to the optimal location of administrative facilities on the construction site, it is possible to reduce the concentration of dust emissions of particles PM2.5 and PM10. In addition, the cost of the dust control method is of concern to contractors, as it leads to an increase in the cost of construction. Therefore, reducing overall transportation costs is another optimization goal. To solve several tasks at once, the study uses multi-purpose optimization using the particle swarm method (MRF) algorithm to find an optimized construction site layout that can simultaneously reduce both the level of pollution from dust emissions and transportation costs.

    Keywords: environmental safety, environmental monitoring, atmospheric air protection, ecology in construction, dust suppression, feasibility study, dust collection systems, labor protection in construction

  • Analytical representation and analysis of loose knots in the course of the calculation of the maximum possible fire load

    We have considered the improvement of analytical formulas for the determination of bending moments in a single-span beam with semi-rigid nodes. We have obtained analytical relationships for deflections, angles of rotation, bending moments and shear forces in a single-span beam with semi-rigid nodes. A convenient coefficient from 0 to 1 is used to specify the intermediate stiffness node. The coefficient characterizes the fraction of possible rotation of the support node. When we derived the formulas, we used the assumption of constant bending stiffness of the beam along its length and linear deformation of the beam material under load. We did not consider the cases of loading the beam with concentrated forces and concentrated bending moments in the span. We realize the complexity and necessity of calculating beams with semi-rigid nodes, so we have created a table for easy calculation. In the table you will find the values of the supporting moments depending on the degree of possible angle rotation. With the information about the bearing moments, you can load the hinged beam with them and construct a bending moment diagram. The upper left and lower left values from the table are used to determine the bending moments at the supports. The upper right and lower right values of the table are used to determine the bending moments in the beam span.

    Keywords: semi-rigid nodes, multilayer structures, calculation methods, contact zone, wooden beams, reinforcement, wood, reinforcement, environmental friendliness

  • Determining the level of responsibility of reinforced concrete columns of a monolithic multi-storey frame building

    Ensuring the reliability and safety of load-bearing structures, buildings and structures is the most important task. The reliability or safety of a structural system is inextricably linked with the elements of this system that provide strength and spatial stability. The importance of each load-bearing element in the building system in ensuring overall mechanical safety is assessed differently. For multi-storey frame buildings, load-bearing elements, for example, columns of the lower floors, if they fail, can lead to a significantly greater volume of destruction compared to the structures of the upper floors. The article provides a methodology for determining criteria by which the level of responsibility of columns can be established depending on their location in the building plan, developed on the basis of numerical studies. As a result, a classification was compiled according to the level of responsibility of the columns of a monolithic multi-story frame building.

    Keywords: limit state method, special limit state, emergency design situation, responsibility of load-bearing elements, reinforced concrete columns

  • Analysis of international experience in assessing the durability of crane beams

    The article discusses the key problems of resource and damageability of crane beams over a long period of operation. A classification of the most dangerous defects in crane beams is proposed, taking into account not only the location of the defect, but also the mechanism of its development, as well as possible causes of its occurrence. The focus is on the effect of periodic loading on the initiation and growth of fatigue cracks. The article analyzes international research in order to identify methods and methodologies used to ensure the safety and reliable operation of the objects under study. It is shown that special attention should be paid to periodic examination for the purpose of early detection of cracks of various etiologies and timely adoption of the necessary measures. It has been revealed that the most effective approach to ensuring reliable and safe operation of the object under study throughout its life cycle is the collaboration of modern calculation methods, including fracture mechanics, and experimental techniques during periodic inspections, which will allow the crane beam zones to be ranked according to the likelihood of a defect occurring and reduce risk of sudden brittle failure.

    Keywords: crane beam, crack, brittle fracture, fracture mechanics, shear deformation, normal separation, finite element method, ranking by fracture risk, maintenance, stress-strain state

  • Stress state of a steel span structure for various solutions of the design scheme

    The article provides the results of the calculation of a steel span structure. Two options for the design scheme were considered. In scheme №. 1.1, the bending moment is perceived by the beam elements. In scheme №. 1.2, the bending moment is perceived jointly by the beam elements and cable structures. A comparison was made of the results of determining bending moments.

    Keywords: main beam, secondary beam, column, boundary conditions, loads, bending moment, CAD

  • Factors influencing the energy efficiency of modern high-rise buildings in the city of Vladivostok

    This article is devoted to the analysis of factors influencing the energy efficiency of high-rise buildings. Using the example of the Aquamarine residential complex in the city of Vladivostok, an analysis of high-rise buildings was carried out, calculations were performed, and the results were presented in the form of graphs that reflect the dynamics of the speed of wind flows and temperature changes in the outside air along the height of the building. Changes in these parameters increase the intensity of heat loss, which must be taken into account when developing a space-planning solution and thermal protection of the facades of high-rise buildings.

    Keywords: energy efficiency, aerodynamics, air exchange, heat resistance, high-rise building, microclimate, urban development, energy consumption

  • Algorithms for automatic control of geometric parameters of steel ropes in elevator systems

    The paper considers the problem of automatic detection of defects in the geometric parameters of steel ropes of elevator systems using computer vision methods. The features of flaw detection of moving steel ropes based on video sequences are analyzed, associated with the fragmentation of the image of some defects in adjacent frames and the variability of the geometric dimensions of the rope and the characteristics of the defect visible by the camera due to vibrations of the rope during movement. Taking into account the considered features, two algorithms have been proposed: to determine the defect of thickening/thinning of the rope diameter and the defect of undulation. The paper presents the results of experimental testing of algorithms on a special test bench and calculates the reliability indicators of defect detection by the proposed algorithms in the form of precision and recall of detection of each defect individually, as well as the average precision and recall of detection of both considered defects of geometric parameters of the rope as a whole.

    Keywords: steel rope defects, instrumental control, non-contact flaw detection, computer vision

  • The influence of node compliance on the survivability of buildings and structures

    The problem of safety in the construction of buildings and structures has always been and remains very relevant. In our time of actively developing scientific and technological progress, new risk factors of a technogenic nature appear. Studying the survivability of buildings, and consequently the resistance of buildings to progressive collapses, is a very important task. This article examines the influence of the compliance of nodal connections of a metal frame on progressive collapse.

    Keywords: progressive collapse, yielding of nodes, metal structures, survivability, special effects, calculation methods

  • Comparative analysis of the results of calculation of eccentrically compressed reinforced concrete columns using a deformation model taking into account second-order effects

    The article discusses the areas of application of the deformation model and reviews studies related to its use for various design solutions and operating conditions. A method for calculating eccentrically compressed reinforced concrete elements that takes into account second-order effects is presented. This methodology takes into account the current provisions of regulatory documents. A selection of experimental data was made for flexible eccentrically compressed columns. Calculations of bearing capacity and deflections for selected samples were performed. Various forms of concrete deformation diagrams were used in the calculations. Based on comparison with experimental data, conclusions are drawn about the applicability of various types of diagrams for calculating bearing capacity and deflections.

    Keywords: deformation model, stress-strain diagram, eccentrically compressed element, flexibility

  • Experimental studies to determine the deformation properties of concretes under prolonged loading on materials from Vietnam

    This article is devoted to determining the main characteristics and properties of concretes made from different concrete mixtures based on Vietnamese materials. A total of 16 formulas of concrete mixtures were studied. Concrete samples were tested to determine deformations under prolonged loading. Based on the data obtained, the main creep characteristics were determined, these are the creep measure C0 and the creep coefficient ϕ, as well as additional characteristics including prismatic strength and the initial modulus of elasticity of concrete. The main purpose of this study was to determine the dependencies of the prismatic strength of concrete Rpr, as its main indicator, in relation to the creep coefficient of concrete ϕ. In conclusion, experimental data on the creep coefficients of concrete ϕ were compared with the normative values found according to SP 63.13330 and conclusions were drawn on the effect of concrete creep on its prismatic strength of concrete Rpr made from concrete.

    Keywords: concrete, reinforced concrete, structures, materials, creep, deflections, deformations, prolonged loading

  • Methodology for contact zone shear testing using tensile and compressive loading

    The article deals with the peculiarities of the study objectives and test methodology for characterization of different contact zones organized in different ways and requiring different methodological approach for specimen fabrication and testing. The steel plate-concrete contact zone organized by stamping on the steel plate requires the use of steel molds to prohibit horizontal movement. The contact zone between the steel plate and the concrete, organized by the stamping on the steel plate requires the use of steel molds to prohibit horizontal movement. The contact zone of two wooden bars organized by epoxy glue with reinforcing fabric placed between the layers of glue is tested for shear without organizing the prohibition of horizontal movement. The contact zone formed at the connection of a steel plate and incompletely gained strength concrete, with the association of steel bars has features of fixing the actual strength of the concrete part of the specimen. The considered methods have both a number of common features and differences, which are taken into account in the proposed methods of fabrication and testing.

    Keywords: contact zone, contact characteristics, test methodology, shear tests, stamping, composite construction

  • Automation of structural calculations of wooden light-framed buildings

    In connection with the revival of interest in wooden housing construction in Russia, the creation of specialized software systems for the calculation and design of buildings and structures made of wood is becoming relevant. One of the most popular systems in the world is light-frame housing construction. As one of the possible tools for automated design of light-frame wooden buildings, this article presents the FrameCAD program, developed at the Department of Metal, Wood and Plastic Structures of the Don State Technical University. Some of its capabilities are presented, allowing you to design wall fences of light-frame buildings, beamed wooden floors, perform calculations of individual frame elements taking into account the requirements of current regulatory documents and automatically generate albums of drawings of wooden structures in the domestic NormCAD program, as well as specifications for them factory made. FrameCAD has been tested in the design of a number of objects. The software product is developed by engineers who have many years of experience in the actual design and construction of light-frame buildings. It continues to be improved and supplemented, and in the future it may become a replacement for similar foreign complexes.

    Keywords: wooden structures, software package, wall panels, beam overlap, automated calculation

  • Simulation of the design activity diversification of innovative enterprise

    Improving calculation models of concrete based on experimental data, especially when studying the volumetric stress-strain state, is an urgent task. When calculating the containment shells of nuclear power plants under the influence of beyond design basis accidents, it is absolutely important to take into account the available safety margins of the materials used. Under volumetric loading, due to the work of concrete in cramped conditions, its strength and deformation characteristics improve, which is not sufficiently reflected in the regulatory documentation in force in the Russian Federation. Taking into account the analysis of existing test methods, based on the labor intensity and reliability of the results obtained, the optimal method of testing for volumetric loading was identified. The article contains the results of testing the selected test method, taking into account the improvement of the deformation measurement system. They confirmed the effectiveness of using the proposed methodology from the point of view of data reliability and relatively low labor intensity of work.

    Keywords: concrete, volumetric loading test, volumetric strain sockets, deformation diagram

  • Determination of geometric parameters of pits when laying polyethylene gas pipelines using horizontal directional drilling

    The use of closed methods for laying underground polyethylene gas pipelines using horizontal directional and directional drilling methods when crossing artificial and natural obstacles is considered. The results of calculating the geometric parameters of the working and receiving pits when laying polyethylene gas pipelines using a closed method using horizontal directional drilling are presented.

    Keywords: polyethylene gas pipeline, closed installation method, horizontal directional drilling, directional drilling, dimensions of working and receiving pits