×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • Simulation of the design activity diversification of innovative enterprise

    The article discusses the features and prospects of implementing distributed management of critical urban infrastructure facilities based on the principles of autonomy. Based on the analysis, the main technologies, directions of development and features of energy transfer in an urban environment are highlighted, contributing to the introduction of distributed management of urban infrastructure facilities. The study focuses on the analysis of the distributed structure of integrated security of critical urban infrastructure facilities and the development of general principles of distributed management of critical infrastructure facilities using the «Autonomous Building» technology. t is shown that the reliable and safe functioning of critical infrastructure facilities in the city is ensured through the synthesis of special technical systems for complex protection of the facility from major security threats based on the combined use of elements of life support and safety systems. At the same time, technical life support systems for autonomous objects of critical infrastructure of the city are built on the basis of the combined use of autonomous energy sources, including non-renewable energy sources, on the principles of joint operation of electric and static power converters, storage, frequency regulation and energy conversion, and technical safety systems of autonomous objects are built using combined optical and electronic means event detection and recognition with the ability to control the full spectrum of electromagnetic radiation.

    Keywords: distributed management, technology, energy, energy transfer, urban infrastructure, critical facility, electrification, decentralization, automation, autonomy

  • Investigation of the properties of metals during impact indentation using neural network analysis

    Indentation is a universal and practical method for obtaining material characteristics, especially when it is impossible or difficult to expose the material to other measuring methods. Experimental data on the mechanical properties of various types of materials were obtained using the shock loading unit. A mathematical model based on the finite element method was used to verify the experimental results. The article considers the solution of the problem of classification of neural metals with different mechanical properties. As part of the work, an artificial neural network has been created that allows the distribution of materials into selected groups. It is determined that a significant advantage of using neural networks is the ability to process experimental data and identify complex nonlinear dependencies, which makes them in demand in tasks related to the study of material properties.

    Keywords: impact indentation, neural network, task of classification, artificial intelligence, dynamic indentation, non-destructive testing.

  • Optimal cutting of rolled metal in the context of two-dimensional design of bar structures

    Bar structures are widespread in construction due to their economy, freedom of design shapes and sizes. As a result, automation of design and calculation of such structures is an urgent task. As part of the study, the task of developing a software module that generates a map of optimal cutting of rolled metal based on the results of calculations of rod structures has been implemented. The algorithm under consideration takes into account such features of the cutting optimization problem as taking into account the width of the blade, the possibility of using half the size of the rolled product, support for optimization of several sections, and welding of parts in case the length of the workpiece is exceeded. The software module is developed using JavaScript and C# languages. The ability to automatically generate cutting maps based on the results of optimization of rod structures increases the efficiency of designing building structures.

    Keywords: Design in construction, bar structure, computing system, web development, design in construction, rod structure, computer system, web development, optimal cutting, rolled metal, cutting map

  • Calculation of spatial filtration of water to a horizontal drain of finite length in a homogeneous stream

    When studying the problems of water filtration to a single horizontal imperfect drain of finite length, in a system of interacting horizontal imperfect drains, it is necessary to consider spatial (three-dimensional) filtration problems. Unlike flat (two-dimensional) problems, spatial filtering has been studied in less detail, since it is difficult to obtain rigorous solutions to their problems.

    Keywords: water supply facilities, filtration, equipotentials, drainage, borehole, pressure reservoir, drain, pressure, inflow, reservoir, watercourse

  • Methods for determining the calculated lengths of centrally loaded steel columns when pivotally adjacent to reinforced concrete bases

    This article discusses several ways to determine the calculated lengths of steel columns in the plane of the frame. By analyzing existing techniques, the most successful method of selecting the calculated lengths for steel columns in a free multi-storey frame was determined. Taking into account the non-standard case of fastening crossbars to the considered section in the frame of the overpass, using the LIRA CAD PC, as well as the Crystal module (implemented in SCAD), the loss of stability of equally loaded elements in the most sensitive area is clearly shown.

    Keywords: Euler's formula, loss of stability, coefficient of calculated length, calculated length, coefficient of stability margin, finite elements

  • Increasing the stability of staircases in difficult engineering and geological conditions

    The article discusses the issues of stability of pedestrian paths and staircases located on sloped areas and interacting with a complex geological environment. The features of designing construction projects on sloping areas are considered. The reasons for the occurrence of various defects and destruction on the staircase, located on the embankment of Khabarovsk, were investigated. An assessment of the stability of the structure during repair work is given. Measures are proposed to increase the stability of the structure.

    Keywords: staircase, slope, slope stability, stress-strain state, fortifications

  • The main directions of development of architecture of the North Caucasus are a symbiosis of modern technologies and national traditions

    The article examines the unique symbiosis of modern technologies and national traditions, analyzes the stages of formation and development of the main directions of architecture development in the North Caucasus in the context of modern trends. The subject of the study is the architecture of the North Caucasus, taking into account modern design trends. The object of the study is buildings and structures, urban conglomerates of the North Caucasus region. The most striking example of this symbiosis is the new projects in the Caucasus, where architecture literally combines with the landscape, showing the unique interaction between man and nature. Thanks to modern construction methods, these buildings combine traditional architecture and modern construction technologies, creating a harmonious space. The architecture of the future, despite its subjectivity, has readability because culture and technological progress always affect architecture. In general, we can identify a number of features characteristic of the architecture of the future: cost-effectiveness, ergonomics, environmental friendliness and versatility. It is also necessary to mention new modern construction technologies, which include elements such as artificial intelligence, automation and robotization of processes, the use of 3D printing and digital modeling of building information (BIM).The symbiosis of modern construction and Caucasian culture is a unique combination of architecture of the past and the present. The synergy between modern construction technologies and traditional Caucasian culture can be very promising. It has the potential to simultaneously revive local cultural identity, contribute to sustainable practices, and create unique architectural designs that harmonize innovation and tradition. Historical forms and materials are actively combined with modern technology and materials, resulting in an architecture that simultaneously preserves its roots and looks to the future. This close interaction and symbiosis highlights the importance of culture in architecture and shows how innovations can be used to preserve and update cultural heritage.

    Keywords: construction, architectural design, modern trends, energy efficiency, thermal protection of buildings, construction industry, ecology, green construction, architectural bionics, North Caucasus

  • Reinforcement with composite materials to protect the reinforced concrete slab–column from pushing through the node

    Reinforced concrete flat slabs continue to be one of the most popular floor systems due to the speed of construction and their inherent flexibility in the layout of the premises. However, flat, non-rigid floors are subject to brittle fracture at the junction of the slab and column, which can spread and lead to the progressive collapse of a larger segment of the structural system. The lack of shear strength in two directions may be due to design errors, insufficient strength of the material, or overload.

    Keywords: reinforced concrete slab, punching, transverse reinforcement, fiberglass, carbon fiber

  • Disassembly mechanical cleaning of plate heat exchangers

    The article considers the problem of sediment formation, sludge and corrosion on the heat transfer surface during the operation of heat exchange equipment at housing and communal services facilities. A new method of non-selective mechanical cleaning using a water hammer is proposed. The description and principle of operation of this cleaning system at the central heating station of the Ogarev Moscow State University are given. To confirm the effectiveness of the proposed technical solution, the results of thermal and hydraulic tests are presented.

    Keywords: deposits, sludge, corrosion, cleaning, heat exchanger, water hammer, heat transfer

  • Experimental study of the effect of the modulus of elasticity of concrete on the change in its strength under short-term loading on materials from the Hanoi region

    As part of the work on the PhD thesis on the creation of new systems and calculation devices for the design of reinforced concrete tanks for the storage of liquefied natural gas, work was done to determine the properties of concrete mixtures used in the construction of tanks in Vietnam, namely in the Hanoi area. A feature of the materials used for the manufacture of concrete is the use of local rocks, which have distinctive properties, which affects the strength and deformation properties of concrete. The article presents the results of experimental studies of the properties of concretes made with Vietnamese materials. A relationship was established between the modulus of elasticity of concrete and its prismatic compressive strength. As part of the study, 16 formulas of concrete mixtures on different materials from Vietnam were compiled and studied. As a result of the conducted research, the dependence of the modulus of elasticity and the intended strength of concrete was revealed, which will later be used in the creation of calculation devices for the design of reinforced concrete structures.

    Keywords: concrete, reinforced concrete, materials, structures, modulus of elasticity, prismatic strength of concrete, deformations

  • A way to increase the bearing capacity of columns during the reconstruction of buildings

    The article presents a way to increase the load-bearing capacity of a reinforced concrete column due to metal clips from the corners with an increase in the load on it. To ensure the joint operation of the existing column and the metal cage, the corners are subjected to prestressing, which is achieved by compressing the corners with jacks.

    Keywords: reinforced concrete column, column reinforcement, metal cage, prestressing of the cage

  • A look at the problem of reusing scrap concrete in the construction industry

    Concrete paving slabs for road construction are made from mixtures consisting of hydraulic binder, fine and coarse aggregates and water. The prepared mixture of a given humidity is subjected to vibration molding under the following technological conditions: process duration 5–10 seconds, vibration frequency 30–50 Hz and pressure 70–80 kg/cm2. Hardening of freshly molded samples is carried out in a heat and humidity treatment chamber. It has been established that it is possible to replace natural coarse aggregate with fractionated scrap concrete. The compressive strength of concrete with aggregate based on recycled crushed stone is 300 - 400 kg/cm2, water absorption 4.8 - 6.2%, frost resistance F2 200 - 300. The proposed technology allows solving both economic and environmental issues for regions with large amounts of concrete scrap at temporary industrial waste storage sites.

    Keywords: concrete mixture, vibroforming, modifiers, filler, waste, concrete scrap, strength

  • The influence of modern development on the ecology of megacities

    The presence of a large number of undeveloped areas within the city - now inactive enterprises - creates a negative impact on the urban environment. Since these territories are depressed spaces, the design of new residential areas with characteristic high-rise buildings seems to be a logical path for the development of the city. However, uncontrolled urbanization and dense multi-storey buildings represent a fundamental change in the human environment. The consequences of this approach lead to a deterioration in the air exchange of areas and contributes to the formation of “heat islands” that affect air pollution. This contributes to the deterioration of the environmental and social situation and the emergence of a negative perception of the environment among the population. The worsening of this problem may cause a deterioration in the social climate in large cities. The article analyzes the impact of dense high-rise buildings on the environment located on the territory of non-operating enterprises. Methods for solving this problem are indicated. The results of field observations and studies of the interhouse space are presented, on the basis of which the role of convective flows of thermal origin in the air exchange of urban space is revealed. A comparative analysis of projects for the development of the territory of a former house-building plant with complexes for various functional purposes is presented.

    Keywords: urban area, air exchange, convective flows, temperature conditions, standard buildings, renovation, leisure facilities, depressed spaces

  • Numerical analysis of connections of steel structure elements

    The practical significance associated with the development of automated software systems for calculating joints of steel structures of buildings and structures is noted. Using the IDEA Statica software package as an example, the calculation and analysis of the operation of a steel unit connecting the lower chord of a truss to a column was carried out. The order and sequence of entering the initial data for calculating the connection is shown. The calculation results present in tabular and graphical forms the equivalent stresses and plastic deformations of the main elements, as well as the results of inspections of bolted and welded connections of these elements to each other. A comparative analysis of numerical and analytical calculations was performed. Conclusions are formulated based on the results presented in the article.

    Keywords: calculation model, connections, steel structures, component finite element method, design, nonlinear analysis, work analysis, stress, plastic deformation, bolted connection, welded connection

  • Review of landscape and ecological features of enotourism objects

    The article considers ecological and landscape features on the example of modern realized objects of wine tourism in the South of Russia. Based on the analysis of a number of new winery facilities and publications on this issue, some features in the context of modern architecture and its enotourism component are identified. Conclusions are made about the conformity of these features to the global modern trends in the design of buildings, such as environmental friendliness and resource conservation, respect for the landscape. On the example of the considered objects the hypothesis that the techniques of architect's work with the environment in conjunction with the original architecture increase the tourist attractiveness of wine production in general is confirmed.

    Keywords: architecture, winery, enotourism, agritourism, landscape, project, landscaping, volume and planning solutions

  • Calculation of concrete elements in conditions of uneven all-round compression

    The cases of uneven compression of a concrete cylinder in the case of simple loading and comprehensive uneven compression of a spiral-reinforced concrete cylinder under disproportionate loading are considered. The dependences of longitudinal, transverse and volumetric deformations on longitudinal stress are obtained.

    Keywords: longitudinal stress, circumferential stress, longitudinal deformation, circumferential deformation, spiral reinforced concrete strut, shear strain intensity, shear stress intensity

  • Framed steel earthquake-resistant structures traditional design principles

    The main means of seismic protection for increasing the seismic resistance of buildings and structures are described. The main problems associated with the design of special seismic protection equipment are outlined. The basic requirements for the design and calculations of steel frame frames taking into account seismic impact in accordance with the current design standards in the Russian Federation are analyzed. There is an insufficient description of the requirements specified in the standards for performing calculations and design of structures and their connections. Recommendations and instructions are given for taking into account the requirements of the standards for the design of steel frame frames. Schematic diagrams of special units for coupling columns with crossbars, necessary for design in seismically hazardous areas, are presented. Conclusions are formulated.

    Keywords: special units, columns, beams, seismic impact, seismic protection, steel frames, plastic hinges, excess strength factor, forces, plastic moment, design.

  • Towards a method for calculating reinforced concrete flexible eccentrically compressed structures operating with large eccentricity

    This article presents a new developed calculation methodology, which includes provisions for standard calculations and takes into account the peculiarities of the operation of eccentrically compressed reinforced concrete structures operating at large eccentricities of load application. Adjustments have been made to the calculation methodology to take into account the following factors: the standard methodology uses the maximum tensile strength of reinforcement; proposals have been developed to determine the actual resistance of tensile reinforcement, which, in fact, will be significantly lower than the limit. Proposals are given that take into account the limiting deformations of concrete, which, in turn, will be a key quantity for determining the resistance of tensile reinforcement in the cross section. The article also presents the results of experimental studies of a flexible reinforced concrete pillar operating with a load eccentricity equal to e0 = 0.32h. Theoretical calculations and experimental studies were analyzed and appropriate conclusions were drawn.A formula has been developed to determine the real resistance of the stretched metal reinforcement at the time preceding destruction. The calculation algorithm has been compiled. When comparing theoretical and experimental strength, the difference did not exceed 5%.

    Keywords: steel, heavy concrete, reinforced concrete, testing, stand

  • Investigation of reinforcement bonding parameters in concrete for its evaluation during corrosion

    The structural integrity of many reinforced concrete structures can be broken due to corrosion of reinforcing steel. This phenomenon is quite pronounced in infrastructure where de-icing chemicals are widely used. The aim of this study is to examine the bond characteristics between reinforcing steel and surrounding concrete to evaluate its effect in corrosion. The strength of the bond was studied in terms of elongation load response, cracking behavior.It is shown that the friction between concrete and reinforcement along the edge of the rib prevents the concrete key from sliding relative to the rib. The force due to friction between the reinforcement and concrete at the rib is vectorially added to the cohesion component acting perpendicular to the rib. If friction between the concrete and reinforcement is lost, the only component of bond strength is the force acting perpendicular to the rib. In pullout failure, the friction between concrete and reinforcement is less important than in spalling failure.

    Keywords: reinforcement, concrete, bond, slip, sliding, pullout, corrosion, concrete deformation.

  • Calculation of multi-cycle fatigue of frame assemblies

    One of the main causes of structural failure is fatigue, which is caused by failure under repeated cyclic load. The vibration strength of welded joints depends on the height of the weld catheter, equivalent Mises stresses and general movements of frame assemblies of building metal structures experiencing multi-cycle loading reliability of frame assemblies when they are reinforced.

    Keywords: reinforcements, reliability, assemblies, metal structures, multi-cycle fatigue

  • Water resistance of concrete fabric

    Increasing the energy efficiency of the construction process involves the use of materials with the lowest material intensity, including thickness, as well as with a reduced content of Portland cement clinker while maintaining or improving the technical characteristics of the products. In this regard, the use of textile concrete products, including concrete sheets, is promising. The development of a composite binder containing components that reduce nega-tive pressure in hardening concrete, and consequently shrinkage deformations and cracking, made it possible to obtain products with the following waterproofness indicators: determined by the ""wet spot"" method: 1.2 MPa; with a filtration coefficient of 5-7×10-11 cm / s; the concrete waterproof grade W12

    Keywords: textile-concrete, concrete web, water resistance, shrinkage during hardening, cracking, fine concrete

  • The work of reinforced concrete slabs during pressing

    This article discusses the results of studies of the behavior of reinforced concrete slabs during punching. The parameters affecting the shear strength of the joints of columns and slabs are considered. Studies of the influence of the strength of concrete, the location of reinforcement, the reinforcement coefficient, the shape and size of the column are given. Various types of reinforcement of reinforced concrete slabs in the punching zone are presented.

    Keywords: floor slab, column, punching, shear, bending, transverse reinforcement, dowel action

  • Characteristic defects of monolithic structures in violation of the technology of work in winter

    The article provides an overview of the characteristic defects that occur during winter concreting as a result of violations of the technology of concrete work. The relevance of this topic is justified by the large-scale increase in the volume of construction of monolithic buildings for various purposes: residential, public, as well as various types of structures made of monolithic reinforced concrete. A feature of the review of these defects is in this case their main causes, which are associated with violations of concreting technology due to the need in some cases to accelerate production work. The defects presented in this article were identified based on the analysis of accounting documentation when performing visual surveys in the process of scientific and technical support for the construction of buildings of increased responsibility. The violations described in the article were observed at various monolithic construction sites within modern megacities. The article describes the main causes of these defects. The ways of eliminating these defects based on engineering practice are proposed.

    Keywords: inspection of building structures, defects of monolithic structures, scientific and technical support of construction, flaw detection of building structures, concreting in winter

  • Reducing the concentration of fine dust PM2.5 and PM10 in construction by optimizing facilities on the construction site

    In most countries of the world, the construction industry is one of the main sources of air pollution in urban areas and agglomerations. One of the most dangerous pollutants are fine dust particles PM2.5 and PM10, formed from the production of dusty construction processes. Due to the optimal location of administrative facilities on the construction site, it is possible to reduce the concentration of dust emissions of particles PM2.5 and PM10. In addition, the cost of the dust control method is of concern to contractors, as it leads to an increase in the cost of construction. Therefore, reducing overall transportation costs is another optimization goal. To solve several tasks at once, the study uses multi-purpose optimization using the particle swarm method (MRF) algorithm to find an optimized construction site layout that can simultaneously reduce both the level of pollution from dust emissions and transportation costs.

    Keywords: environmental safety, environmental monitoring, atmospheric air protection, ecology in construction, dust suppression, feasibility study, dust collection systems, labor protection in construction

  • Determining the level of responsibility of reinforced concrete columns of a monolithic multi-storey frame building

    Ensuring the reliability and safety of load-bearing structures, buildings and structures is the most important task. The reliability or safety of a structural system is inextricably linked with the elements of this system that provide strength and spatial stability. The importance of each load-bearing element in the building system in ensuring overall mechanical safety is assessed differently. For multi-storey frame buildings, load-bearing elements, for example, columns of the lower floors, if they fail, can lead to a significantly greater volume of destruction compared to the structures of the upper floors. The article provides a methodology for determining criteria by which the level of responsibility of columns can be established depending on their location in the building plan, developed on the basis of numerical studies. As a result, a classification was compiled according to the level of responsibility of the columns of a monolithic multi-story frame building.

    Keywords: limit state method, special limit state, emergency design situation, responsibility of load-bearing elements, reinforced concrete columns